Contract Diff Checker

Contract Name:
FlarePair

Contract Source Code:

File 1 of 1 : FlarePair

// Sources flattened with hardhat v2.7.0 https://hardhat.org

// File contracts/flare/FlarePair.sol

// SPDX-License-Identifier: GPL-3.0
pragma solidity =0.6.12;

// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)

library SafeMathFlare {
    function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
        require((z = x + y) >= x, "ds-math-add-overflow");
    }

    function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        require((z = x - y) <= x, "ds-math-sub-underflow");
    }

    function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow");
    }
}


contract FlareERC20 {
    using SafeMathFlare for uint256;

    string public constant name = "Flare LP Token";
    string public constant symbol = "FLP";
    uint8 public constant decimals = 18;
    uint256 public totalSupply;
    mapping(address => uint256) public balanceOf;
    mapping(address => mapping(address => uint256)) public allowance;

    bytes32 public DOMAIN_SEPARATOR;
    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    bytes32 public constant PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
    mapping(address => uint256) public nonces;

    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
    event Transfer(address indexed from, address indexed to, uint256 value);

    constructor() public {
        uint256 chainId;
        assembly {
            chainId := chainid()
        }
        DOMAIN_SEPARATOR = keccak256(
            abi.encode(
                keccak256(
                    "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
                ),
                keccak256(bytes(name)),
                keccak256(bytes("1")),
                chainId,
                address(this)
            )
        );
    }

    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal pure virtual returns (bytes calldata) {
        return msg.data;
    }

    function _mint(address to, uint256 value) internal {
        totalSupply = totalSupply.add(value);
        balanceOf[to] = balanceOf[to].add(value);
        emit Transfer(address(0), to, value);
    }

    function _burn(address from, uint256 value) internal {
        balanceOf[from] = balanceOf[from].sub(value);
        totalSupply = totalSupply.sub(value);
        emit Transfer(from, address(0), value);
    }

    function _approve(
        address owner,
        address spender,
        uint256 value
    ) private {
        allowance[owner][spender] = value;
        emit Approval(owner, spender, value);
    }

    function _transfer(
        address from,
        address to,
        uint256 value
    ) private {
        balanceOf[from] = balanceOf[from].sub(value);
        balanceOf[to] = balanceOf[to].add(value);
        emit Transfer(from, to, value);
    }

    function approve(address spender, uint256 value) external returns (bool) {
        _approve(_msgSender(), spender, value);
        return true;
    }

    function transfer(address to, uint256 value) external returns (bool) {
        _transfer(_msgSender(), to, value);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool) {
        if (allowance[from][_msgSender()] != uint256(-1)) {
            allowance[from][_msgSender()] = allowance[from][_msgSender()].sub(
                value
            );
        }
        _transfer(from, to, value);
        return true;
    }

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external {
        require(deadline >= block.timestamp, "permit: EXPIRED");
        bytes32 digest = keccak256(
            abi.encodePacked(
                "\x19\x01",
                DOMAIN_SEPARATOR,
                keccak256(
                    abi.encode(
                        PERMIT_TYPEHASH,
                        owner,
                        spender,
                        value,
                        nonces[owner]++,
                        deadline
                    )
                )
            )
        );
        address recoveredAddress = ecrecover(digest, v, r, s);
        require(
            recoveredAddress != address(0) && recoveredAddress == owner,
            "permit: INVALID_SIGNATURE"
        );
        _approve(owner, spender, value);
    }
}



// a library for performing various math operations

library Math {
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        z = x < y ? x : y;
    }

    // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }
}

library UQ112x112 {
    uint224 constant Q112 = 2**112;

    // encode a uint112 as a UQ112x112
    function encode(uint112 y) internal pure returns (uint224 z) {
        z = uint224(y) * Q112; // never overflows
    }

    // divide a UQ112x112 by a uint112, returning a UQ112x112
    function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
        z = x / uint224(y);
    }
}


interface IERC20Flare {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);
}


interface IFlareFactory {
    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    function feeTo() external view returns (address);

    function feeToSetter() external view returns (address);

    function migrator() external view returns (address);

    function getPair(address tokenA, address tokenB)
        external
        view
        returns (address pair);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function createPair(address tokenA, address tokenB)
        external
        returns (address pair);

    function setFeeTo(address) external;

    function setFeeToSetter(address) external;

    function setMigrator(address) external;
}


interface IFlareCallee {
    function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external;
}

interface IMigrator {
    // Return the desired amount of liquidity token that the migrator wants.
    function desiredLiquidity() external view returns (uint256);
}

contract FlarePair is FlareERC20 {
    using SafeMathFlare for uint256;
    using UQ112x112 for uint224;

    uint256 public constant MINIMUM_LIQUIDITY = 10**3;
    bytes4 private constant SELECTOR =
        bytes4(keccak256(bytes("transfer(address,uint256)")));

    address public factory;
    address public token0;
    address public token1;

    uint112 private reserve0; // uses single storage slot, accessible via getReserves
    uint112 private reserve1; // uses single storage slot, accessible via getReserves
    uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves

    uint256 public price0CumulativeLast;
    uint256 public price1CumulativeLast;
    uint256 public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event

    struct SwapVariables {
        uint112 _reserve0;
        uint112 _reserve1;
        uint256 balance0;
        uint256 balance1;
        uint256 amount0In;
        uint256 amount1In;
    }

    uint256 private unlocked = 1;
    modifier lock() {
        require(unlocked == 1, "lock: LOCKED");
        unlocked = 0;
        _;
        unlocked = 1;
    }

    function getReserves()
        public
        view
        returns (
            uint112 _reserve0,
            uint112 _reserve1,
            uint32 _blockTimestampLast
        )
    {
        _reserve0 = reserve0;
        _reserve1 = reserve1;
        _blockTimestampLast = blockTimestampLast;
    }

    function _safeTransfer(
        address token,
        address to,
        uint256 value
    ) private {
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(SELECTOR, to, value)
        );
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            "_safeTransfer: TRANSFER_FAILED"
        );
    }

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);
    event Burn(
        address indexed sender,
        uint256 amount0,
        uint256 amount1,
        address indexed to
    );
    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    constructor() public {
        factory = msg.sender;
    }

    // called once by the factory at time of deployment
    function initialize(address _token0, address _token1) external {
        require(msg.sender == factory, "initialize: FORBIDDEN"); // sufficient check
        token0 = _token0;
        token1 = _token1;
    }

    // update reserves and, on the first call per block, price accumulators
    function _update(
        uint256 balance0,
        uint256 balance1,
        uint112 _reserve0,
        uint112 _reserve1
    ) private {
        require(
            balance0 <= uint112(-1) && balance1 <= uint112(-1),
            "_update: OVERFLOW"
        );
        uint32 blockTimestamp = uint32(block.timestamp % 2**32);
        uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
        if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
            // * never overflows, and + overflow is desired
            price0CumulativeLast +=
                uint256(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) *
                timeElapsed;
            price1CumulativeLast +=
                uint256(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) *
                timeElapsed;
        }
        reserve0 = uint112(balance0);
        reserve1 = uint112(balance1);
        blockTimestampLast = blockTimestamp;
        emit Sync(reserve0, reserve1);
    }

    // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k)
    function _mintFee(uint112 _reserve0, uint112 _reserve1)
        private
        returns (bool feeOn)
    {
        address feeTo = IFlareFactory(factory).feeTo();
        feeOn = feeTo != address(0);
        uint256 _kLast = kLast; // gas savings
        if (feeOn) {
            if (_kLast != 0) {
                uint256 rootK = Math.sqrt(uint256(_reserve0).mul(_reserve1));
                uint256 rootKLast = Math.sqrt(_kLast);
                if (rootK > rootKLast) {
                    uint256 numerator = totalSupply.mul(rootK.sub(rootKLast));
                    uint256 denominator = rootK.mul(5).add(rootKLast);
                    uint256 liquidity = numerator / denominator;
                    if (liquidity > 0) _mint(feeTo, liquidity);
                }
            }
        } else if (_kLast != 0) {
            kLast = 0;
        }
    }

    // this low-level function should be called from a contract which performs important safety checks
    function mint(address to) external lock returns (uint256 liquidity) {
        (uint112 _reserve0, uint112 _reserve1, ) = getReserves(); // gas savings
        uint256 balance0 = IERC20Flare(token0).balanceOf(address(this));
        uint256 balance1 = IERC20Flare(token1).balanceOf(address(this));
        uint256 amount0 = balance0.sub(_reserve0);
        uint256 amount1 = balance1.sub(_reserve1);

        bool feeOn = _mintFee(_reserve0, _reserve1);
        uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        if (_totalSupply == 0) {
            address migrator = IFlareFactory(factory).migrator();
            if (_msgSender() == migrator) {
                liquidity = IMigrator(migrator).desiredLiquidity();
                require(
                    liquidity > 0 && liquidity != uint256(-1),
                    "mint: Bad desired liquidity"
                );
            } else {
                require(migrator == address(0), "Must not have migrator");
                liquidity = Math.sqrt(amount0.mul(amount1)).sub(
                    MINIMUM_LIQUIDITY
                );
                _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
            }
        } else {
            liquidity = Math.min(
                amount0.mul(_totalSupply) / _reserve0,
                amount1.mul(_totalSupply) / _reserve1
            );
        }
        require(liquidity > 0, "mint: INSUFFICIENT_LIQUIDITY_MINTED");
        _mint(to, liquidity);

        _update(balance0, balance1, _reserve0, _reserve1);
        if (feeOn) kLast = uint256(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
        emit Mint(_msgSender(), amount0, amount1);
    }

    // this low-level function should be called from a contract which performs important safety checks
    function burn(address to)
        external
        lock
        returns (uint256 amount0, uint256 amount1)
    {
        (uint112 _reserve0, uint112 _reserve1, ) = getReserves(); // gas savings
        address _token0 = token0; // gas savings
        address _token1 = token1; // gas savings
        uint256 balance0 = IERC20Flare(_token0).balanceOf(address(this));
        uint256 balance1 = IERC20Flare(_token1).balanceOf(address(this));
        uint256 liquidity = balanceOf[address(this)];

        bool feeOn = _mintFee(_reserve0, _reserve1);
        uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
        amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
        require(
            amount0 > 0 && amount1 > 0,
            "burn: INSUFFICIENT_LIQUIDITY_BURNED"
        );
        _burn(address(this), liquidity);
        _safeTransfer(_token0, to, amount0);
        _safeTransfer(_token1, to, amount1);
        balance0 = IERC20Flare(_token0).balanceOf(address(this));
        balance1 = IERC20Flare(_token1).balanceOf(address(this));

        _update(balance0, balance1, _reserve0, _reserve1);
        if (feeOn) kLast = uint256(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date
        emit Burn(_msgSender(), amount0, amount1, to);
    }

    // this low-level function should be called from a contract which performs important safety checks
    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external lock {
        require(
            amount0Out > 0 || amount1Out > 0,
            "swap: INSUFFICIENT_OUTPUT_AMOUNT"
        );
        SwapVariables memory vars = SwapVariables(0, 0, 0, 0, 0, 0);
        (vars._reserve0, vars._reserve1, ) = getReserves(); // gas savings
        require(
            amount0Out < vars._reserve0 && amount1Out < vars._reserve1,
            "swap: INSUFFICIENT_LIQUIDITY"
        );

        {
            // scope for _token{0,1}, avoids stack too deep errors
            address _token0 = token0;
            address _token1 = token1;
            require(to != _token0 && to != _token1, "swap: INVALID_TO");
            if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
            if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
            if (data.length > 0)
                IFlareCallee(to).uniswapV2Call(
                    _msgSender(),
                    amount0Out,
                    amount1Out,
                    data
                );
            vars.balance0 = IERC20Flare(_token0).balanceOf(address(this));
            vars.balance1 = IERC20Flare(_token1).balanceOf(address(this));
        }
        vars.amount0In = vars.balance0 > vars._reserve0 - amount0Out
            ? vars.balance0 - (vars._reserve0 - amount0Out)
            : 0;
        vars.amount1In = vars.balance1 > vars._reserve1 - amount1Out
            ? vars.balance1 - (vars._reserve1 - amount1Out)
            : 0;
        require(
            vars.amount0In > 0 || vars.amount1In > 0,
            "swap: INSUFFICIENT_INPUT_AMOUNT"
        );
        {
            // scope for reserve{0,1} - Adjusted, avoids stack too deep errors
            uint256 balance0Adjusted = vars.balance0.mul(10000).sub(
                vars.amount0In.mul(25)
            );
            uint256 balance1Adjusted = vars.balance1.mul(10000).sub(
                vars.amount1In.mul(25)
            );
            require(
                balance0Adjusted.mul(balance1Adjusted) >=
                    uint256(vars._reserve0).mul(vars._reserve1).mul(10000**2),
                "swap: K"
            );
        }

        _update(vars.balance0, vars.balance1, vars._reserve0, vars._reserve1);
        emit Swap(
            _msgSender(),
            vars.amount0In,
            vars.amount1In,
            amount0Out,
            amount1Out,
            to
        );
    }

    // force balances to match reserves
    function skim(address to) external lock {
        address _token0 = token0; // gas savings
        address _token1 = token1; // gas savings
        _safeTransfer(
            _token0,
            to,
            IERC20Flare(_token0).balanceOf(address(this)).sub(reserve0)
        );
        _safeTransfer(
            _token1,
            to,
            IERC20Flare(_token1).balanceOf(address(this)).sub(reserve1)
        );
    }

    // force reserves to match balances
    function sync() external lock {
        _update(
            IERC20Flare(token0).balanceOf(address(this)),
            IERC20Flare(token1).balanceOf(address(this)),
            reserve0,
            reserve1
        );
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):