Contract 0xce37051a3e60587157dc4c0391b4c555c6e68255

Txn Hash Method
Block
From
To
Value [Txn Fee]
0xf56ac420feba2e62e077688cfab9c2b3207f281492348b808794546410755454Burn To Withdraw28380302023-01-30 1:47:125 days 10 hrs ago0x73afef607da2dbd27bd9c83e9e9297ae9ca1fd2b IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0248600905
0xb4ec1c1249d3ee4288eef71e7f9bb750f491fa91dd371983929b48feb7b0308dUnlock Deposit28380262023-01-30 1:46:185 days 10 hrs ago0x73afef607da2dbd27bd9c83e9e9297ae9ca1fd2b IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0xb2ed6f1694461a1e8dceebe73767311c5ecd518b5c56fc68be3cc01c13fb7554Burn To Withdraw28244322023-01-28 3:38:367 days 8 hrs ago0x2df1d592300168c3f066e6285066adfd299a2828 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0330463
0xa01a778012a68e4a0588fc987ad7c1a115c48ea864c9142435989272d4fa1a53Burn To Withdraw28135322023-01-26 14:42:428 days 21 hrs ago0x21a23e89bf76a6093ecaac516d09d852ffc11b40 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0318051265
0x31578eac2cd19c1a4e5d6be71e09f0abecb53fcad85118cfdaf950ce566cc305Burn To Withdraw28030542023-01-25 3:08:4210 days 9 hrs ago0xd9a811070a9f4ea5a0a6f345e3188e2f5b5e5f0f IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335383405
0x801352a82d4916e595dc87908425550f9b067bdcd0cc5f717eb34b0cdad007b9Unlock Deposit28030482023-01-25 3:07:3010 days 9 hrs ago0xd9a811070a9f4ea5a0a6f345e3188e2f5b5e5f0f IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0xa14fdf8cd4caba549ab09f56b5f89bff64575c6a4dac093da8726f7b0ffab68eBurn To Withdraw28000572023-01-24 16:56:1810 days 19 hrs ago0xf77506dac023a7483b8ec308b387abb161ac4fa0 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0318026905
0xa40eea9a10ebd254797c449237ee0db83c82a33dc0d3201384e5267cff56f8caUnlock Deposit28000442023-01-24 16:53:4210 days 19 hrs ago0xf77506dac023a7483b8ec308b387abb161ac4fa0 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0xe09e3085a8970c8d0e49d17262430b19ebad5c9f53b9983b1637efdea50d83e5Burn To Withdraw27993982023-01-24 14:41:4210 days 21 hrs ago0x1b18a7b058eedac1f55c74422cc3d5a694d5d023 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335383405
0x682cc5de8b4350c4440029c0b02b4bba66f5b2f66ce351a36f5abd0a796e47c1Unlock Deposit27993922023-01-24 14:40:3010 days 21 hrs ago0x1b18a7b058eedac1f55c74422cc3d5a694d5d023 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0xa6f758da7038039f7a764685ae4c5713e33e5e9cda5892dd408fb097b44a10a0Burn To Withdraw27963202023-01-24 4:17:4211 days 7 hrs ago0x34ea619d30d46d7fb8c0ef75aa2f0858df0f8107 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335383405
0x204cc3df21982798caebf18093815dadd3b4bfd6e805c6a5050fefd39124995cUnlock Deposit27961622023-01-24 3:45:5411 days 8 hrs ago0x34ea619d30d46d7fb8c0ef75aa2f0858df0f8107 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0xfb74d143fc31b1efd794c29d8c2325f324c8a1a7127b71661b245c80d8de0d40Burn To Withdraw27949132023-01-23 23:34:0611 days 12 hrs ago0x53c450d75dcc363224b436cfba8111c563617ee6 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335419945
0x14b9f8af8bb71a441a61655394f07edc9b5b0610def79eaf2187d402f2541bf5Burn To Withdraw27730192023-01-20 21:16:0014 days 14 hrs ago0x1a294e224a6eda391b08d5e68d2d0d8bc5d7b8e8 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335383405
0x423eab94246ce82ef7711d150be9b895dbd4c90c8b076ba553da452dfc290ae1Unlock Deposit27730142023-01-20 21:15:0014 days 14 hrs ago0x1a294e224a6eda391b08d5e68d2d0d8bc5d7b8e8 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0x08a45365e4a4e751f4c251f28c51e987d2c0742e2a20d76796451e7fc6d4400eBurn To Withdraw27613512023-01-19 5:48:5416 days 6 hrs ago0x439fc347a360d0c9fda70f9f4f2558b78c5f27ab IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0318063445
0x87a4889e60f17083e95a02637f4d791a8de6dc0a79dbf199b8b72ea686a61940Burn To Withdraw27578742023-01-18 18:04:3016 days 18 hrs ago0xedb61a92de9d08874bdf2a9d1fdf8df9f111bf7d IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0300694765
0x99cccc3306b8ade7dad3f5c59a47a4b9b2f17ef935e64fa66df446ad9852ae51Burn To Withdraw27493252023-01-17 12:54:5417 days 23 hrs ago0xd2b105c24f7ff289e64e044837f6e308740d10a2 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335395585
0x3778516d191537a48e1d62062ce28f79389ca7feb5cd2d5b2264325965e0746dBurn To Withdraw27158482023-01-12 19:40:0022 days 16 hrs ago0x4f9484348af66460fc3d5f79f091b6ff4f0aae5f IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0335419945
0x246152dad6b0887f9b0b78575983241d04f37a6eff245c3cc5cdb8b79563e2e3Unlock Deposit27158442023-01-12 19:39:0622 days 16 hrs ago0x4f9484348af66460fc3d5f79f091b6ff4f0aae5f IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.003582138
0x1c3bed8823274aa8290bcbc9c5c03ac0cab5bb56e019023551266cbf09170a87Burn To Withdraw27074872023-01-11 15:24:3023 days 20 hrs ago0xb26da2730f0ae66e9d33d5c819e8d6a4d8d4918c IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0231244405
0xc3dcc8555ae949a6077cf20f2fb4ab99e2b128ef04d89d3aa988b3c123e5b620Unlock Deposit27074822023-01-11 15:23:3023 days 20 hrs ago0xb26da2730f0ae66e9d33d5c819e8d6a4d8d4918c IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0052389225
0x436505984911dc74d4dd10fe53ebac8381d5661704cfe061fa1eb38e47586348Burn To Withdraw26564132023-01-04 10:49:0031 days 1 hr ago0x33ce1310e0e95bdb74fe3ba755231b0fe1849105 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0300670405
0x32e480992c025970153f6437e699c9f337d5529c5c6870377618f8cb765f8eabBurn To Withdraw26430332023-01-02 13:27:5432 days 22 hrs ago0x140f1787d42cc32632f7f1cbee0b730e7b098147 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0265981765
0x182bf01ebbc5fde427dbd22c14832906625199e7c5bd87e5f9dd36a27e2027b8Burn To Withdraw26402572023-01-02 4:07:3633 days 8 hrs ago0x2618a670b0fbb7b83f79b525325d83643fdfa3f3 IN  0xce37051a3e60587157dc4c0391b4c555c6e682550 GLMR0.0231244405
[ Download CSV Export 
Latest 25 internal transaction
Parent Txn Hash Block From To Value
0xd2a257e61c15fc4af029fa08b3cc5f8c1e5adcb5595b58d19ac293ee4ea5650815749842022-08-03 14:43:42184 days 21 hrs ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x0000000000000000000000000000000000000802662.69 GLMR
0xd2a257e61c15fc4af029fa08b3cc5f8c1e5adcb5595b58d19ac293ee4ea5650815749842022-08-03 14:43:42184 days 21 hrs ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e68255662.69 GLMR
0xaa5f1310c5bba3d2768548f2ecbc4e841e53d60f51b6c29fda8a04ca0a8ff88e15741612022-08-03 11:49:18185 days 25 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080210 GLMR
0xaa5f1310c5bba3d2768548f2ecbc4e841e53d60f51b6c29fda8a04ca0a8ff88e15741612022-08-03 11:49:18185 days 25 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825510 GLMR
0x17dbbaaf3fcaa60f1cf223709bbda241d8a083312f4f5bb7732318f9140d9c1a15741332022-08-03 11:43:18185 days 31 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080230 GLMR
0x17dbbaaf3fcaa60f1cf223709bbda241d8a083312f4f5bb7732318f9140d9c1a15741332022-08-03 11:43:18185 days 31 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825530 GLMR
0x6298ecad737cc5827d9b15dc257ad985a117ee140e83174afd4777a8d8762aef15741142022-08-03 11:39:24185 days 35 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080215 GLMR
0x6298ecad737cc5827d9b15dc257ad985a117ee140e83174afd4777a8d8762aef15741142022-08-03 11:39:24185 days 35 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825515 GLMR
0xb1dc124459b4758ce818a3a7f5adc81e701e927d188293f7f6677015b84b3c4c15740982022-08-03 11:35:48185 days 39 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080290 GLMR
0xb1dc124459b4758ce818a3a7f5adc81e701e927d188293f7f6677015b84b3c4c15740982022-08-03 11:35:48185 days 39 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825590 GLMR
0x585822b1dd6137743247e3ba347562dcb778a673fa7eee7b7670a83f552b9e9715740812022-08-03 11:32:12185 days 42 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080250 GLMR
0x585822b1dd6137743247e3ba347562dcb778a673fa7eee7b7670a83f552b9e9715740812022-08-03 11:32:12185 days 42 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825550 GLMR
0x592c2d541ca904c1316de867ee5e1d7a79498f104a5c4b0123fa7eac438baa0a15740642022-08-03 11:28:36185 days 46 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080225 GLMR
0x592c2d541ca904c1316de867ee5e1d7a79498f104a5c4b0123fa7eac438baa0a15740642022-08-03 11:28:36185 days 46 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825525 GLMR
0x417b093064c2c80133a33f2f96e3598c0bf88b46643a3322dbfe0cf9878899e315740522022-08-03 11:26:06185 days 48 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080225 GLMR
0x417b093064c2c80133a33f2f96e3598c0bf88b46643a3322dbfe0cf9878899e315740522022-08-03 11:26:06185 days 48 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825525 GLMR
0x651defe969a9cce7eabb08820ddf71441863298dd46a063cd91856d04257e68b15740132022-08-03 11:18:06185 days 56 mins ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080235 GLMR
0x651defe969a9cce7eabb08820ddf71441863298dd46a063cd91856d04257e68b15740132022-08-03 11:18:06185 days 56 mins ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825535 GLMR
0x87cd400d2b3c6341916aa6887b2bd3908b9ed59b1a092ccffa8d3bc922b1ae8a15721382022-08-03 4:42:48185 days 7 hrs ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x00000000000000000000000000000000000008028 GLMR
0x87cd400d2b3c6341916aa6887b2bd3908b9ed59b1a092ccffa8d3bc922b1ae8a15721382022-08-03 4:42:48185 days 7 hrs ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e682558 GLMR
0x4eaf2e5d036528204102329588211612c942f58dd86ce8b173b82d7a918f9da415721222022-08-03 4:39:36185 days 7 hrs ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x000000000000000000000000000000000000080212 GLMR
0x4eaf2e5d036528204102329588211612c942f58dd86ce8b173b82d7a918f9da415721222022-08-03 4:39:36185 days 7 hrs ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e6825512 GLMR
0x34a0aa63e890196d8483a9da4152e3e856acda910af1a9680710e8b9d25c9acb15702402022-08-02 22:05:48185 days 14 hrs ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x0000000000000000000000000000000000000802960.1 GLMR
0x34a0aa63e890196d8483a9da4152e3e856acda910af1a9680710e8b9d25c9acb15702402022-08-02 22:05:48185 days 14 hrs ago 0x3309a431de850ec554e5f22b2d9fc0b245a2023e 0xce37051a3e60587157dc4c0391b4c555c6e68255960.1 GLMR
0xb6e98c007606f05dbe80babedcd59d3ec68f696677cb9735cab06fa0fd1e54ff15695062022-08-02 19:30:48185 days 16 hrs ago 0xce37051a3e60587157dc4c0391b4c555c6e682550x00000000000000000000000000000000000008021 GLMR
[ Download CSV Export 
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ClipperVerifiedExchange

Compiler Version
v0.8.4+commit.c7e474f2

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 17 : ClipperVerifiedExchange.sol
//SPDX-License-Identifier: Copyright 2022 Shipyard Software, Inc.
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/math/SafeCast.sol";
import "@prb/math/contracts/PRBMathSD59x18.sol";

import "./ClipperDirectExchange.sol";


contract ClipperVerifiedExchange is ClipperDirectExchange {

  using PRBMathSD59x18 for int256;
  using SafeCast for uint256;
  using SafeCast for int256;

  uint256 constant ONE_IN_DEFAULT_DECIMALS = 1e18;
  uint256 constant ONE_IN_PRICE_DECIMALS = 1e8;

  struct UtilStruct {
    uint256 qX;
    uint256 qY;
    uint256 decimalMultiplierX;
    uint256 decimalMultiplierY;
  }

  constructor(address theSigner, address theWrapper, address[] memory tokens)
    ClipperDirectExchange(theSigner, theWrapper, tokens)
  {}

  function sellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 packedGoodUntil,
    address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external override {

    (uint256 actualInput, uint256 fairOutput) = verifyTokensAndGetAmounts(inputToken, WRAPPER_CONTRACT, inputAmount, outputAmount);

    uint256 goodUntil = unpackAndCheckInvariant(inputToken, actualInput, WRAPPER_CONTRACT, fairOutput, packedGoodUntil);

    bytes32 digest = createSwapDigest(inputToken, WRAPPER_CONTRACT, inputAmount, outputAmount, packedGoodUntil, destinationAddress);
    // Revert if it's signed by the wrong address
    verifyDigestSignature(digest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(digest, goodUntil);

    // We have to _sync the input token manually here
    _sync(inputToken);
    unwrapAndForwardEth(destinationAddress, fairOutput);

    emit Swapped(inputToken, WRAPPER_CONTRACT, destinationAddress, actualInput, fairOutput, auxiliaryData);
  }

  function swap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 packedGoodUntil,
    address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) public override {

    // Revert if the tokens don't exist
    (uint256 actualInput, uint256 fairOutput) = verifyTokensAndGetAmounts(inputToken, outputToken, inputAmount, outputAmount);
    uint256 goodUntil = unpackAndCheckInvariant(inputToken, actualInput, outputToken, fairOutput, packedGoodUntil);

    bytes32 digest = createSwapDigest(inputToken, outputToken, inputAmount, outputAmount, packedGoodUntil, destinationAddress);
    // Revert if it's signed by the wrong address
    verifyDigestSignature(digest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(digest, goodUntil);
    // OK, now we are safe to transfer
    syncAndTransfer(inputToken, outputToken, destinationAddress, fairOutput);
    emit Swapped(inputToken, outputToken, destinationAddress, actualInput, fairOutput, auxiliaryData);
  }

  function unpackAndCheckInvariant(address inputToken, uint256 inputAmount, address outputToken, uint256 outputAmount,
    uint256 packedGoodUntil) internal view returns (uint256) {

    UtilStruct memory s;

    (uint256 pX, uint256 pY,uint256 wX, uint256 wY, uint256 k) = unpackGoodUntil(packedGoodUntil);
    s.qX = lastBalances[inputToken];
    s.qY = lastBalances[outputToken];
    s.decimalMultiplierX = 10**(18 - IERC20Metadata(inputToken).decimals());
    s.decimalMultiplierY = 10**(18 - IERC20Metadata(outputToken).decimals());

    require(swapIncreasesInvariant(inputAmount * s.decimalMultiplierX, pX, s.qX * s.decimalMultiplierX, wX,
        outputAmount * s.decimalMultiplierY, pY, s.qY * s.decimalMultiplierY, wY, k), "Invariant check failed");

    return uint256(uint32(packedGoodUntil));
  }

  function unpackGoodUntil(uint256 packedGoodUntil) public pure
    returns (uint256 pX, uint256 pY, uint256 wX, uint256 wY, uint256 k) {
    /*
        * Input asset price in 8 decimals - uint64
        * Output asset price in 8 decimals - uint64
        * k value in 18 decimals - uint64
        * Input asset weight - uint16
        * Output asset weight - uint16
        * Current good until value - uint32 - can be taken as uint256(uint32(packedGoodUntil))
    */
    // goodUntil = uint256(uint32(packedGoodUntil));
    packedGoodUntil = packedGoodUntil >> 32;
    wY = uint256(uint16(packedGoodUntil));
    packedGoodUntil = packedGoodUntil >> 16;
    wX = uint256(uint16(packedGoodUntil));
    packedGoodUntil = packedGoodUntil >> 16;
    k = uint256(uint64(packedGoodUntil));
    packedGoodUntil = packedGoodUntil >> 64;
    pY = uint256(uint64(packedGoodUntil));
    packedGoodUntil = packedGoodUntil >> 64;
    pX = uint256(uint64(packedGoodUntil));
  }

  /*
  Before calling:
  Set qX = lastBalances[inAsset];
  Set qY = lastBalances[outAsset];

  Multiply all quantities (q and in/out) by 10**(18-asset.decimals()).
  This puts all quantities in 18 decimals.

  Assumed decimals:
  K: 18
  Quantities: 18 (ONE_IN_DEFAULT_DECIMALS = 1e18)
  Prices: 8 (ONE_IN_PRICE_DECIMALS = 1e8)
  Weights: 0 (100 = 100)
  */
  function swapIncreasesInvariant(uint256 inX, uint256 pX, uint256 qX, uint256 wX, uint256 outY, uint256 pY, uint256 qY,
    uint256 wY, uint256 k) internal pure returns (bool) {

    uint256 invariantBefore;
    uint256 invariantAfter;
    {
      uint256 pqX = pX * qX / ONE_IN_PRICE_DECIMALS;
      uint256 pqwXk = fractionalPow(pqX * wX, k);
      if (pqwXk > 0) {
        invariantBefore += (ONE_IN_DEFAULT_DECIMALS * pqX) / pqwXk;
      }

      uint256 pqY = pY * qY / ONE_IN_PRICE_DECIMALS;
      uint256 pqwYk = fractionalPow(pqY * wY, k);
      if (pqwYk > 0) {
        invariantBefore += (ONE_IN_DEFAULT_DECIMALS * pqY) / pqwYk;
      }
    }
    {
      uint256 pqXinX = (pX * (qX + inX)) / ONE_IN_PRICE_DECIMALS;
      uint256 pqwXinXk = fractionalPow(pqXinX * wX, k);
      if (pqwXinXk > 0) {
        invariantAfter += (ONE_IN_DEFAULT_DECIMALS * pqXinX) / pqwXinXk;
      }

      uint256 pqYoutY = pY * (qY - outY) / ONE_IN_PRICE_DECIMALS;
      uint256 pqwYoutYk = fractionalPow(pqYoutY * wY, k);
      if (pqwYoutYk > 0) {
        invariantAfter += (ONE_IN_DEFAULT_DECIMALS * pqYoutY) / pqwYoutYk;
      }
    }
    return invariantAfter > invariantBefore;
  }

  function fractionalPow(uint256 input, uint256 pow) internal pure returns (uint256) {
    if (input == 0) {
      return 0;
    } else {
      // input^(pow/1e18) -> exp2( (pow * log2( input ) / 1e18 ) )
      return exp2((int256(pow) * log2(input.toInt256())) / int256(ONE_IN_DEFAULT_DECIMALS));
    }
  }

  function exp2(int256 x) internal pure returns (uint256) {
    return x.exp2().toUint256();
  }

  function log2(int256 x) internal pure returns (int256 y) {
    y = x.log2();
  }

}

File 2 of 17 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 3 of 17 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/math/SafeCast.sol)

pragma solidity ^0.8.0;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCast {
    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits");
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits");
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits");
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits");
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits");
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits");
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits.
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits");
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        require(value >= 0, "SafeCast: value must be positive");
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v3.1._
     */
    function toInt128(int256 value) internal pure returns (int128) {
        require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits");
        return int128(value);
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v3.1._
     */
    function toInt64(int256 value) internal pure returns (int64) {
        require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits");
        return int64(value);
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v3.1._
     */
    function toInt32(int256 value) internal pure returns (int32) {
        require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits");
        return int32(value);
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v3.1._
     */
    function toInt16(int256 value) internal pure returns (int16) {
        require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits");
        return int16(value);
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits.
     *
     * _Available since v3.1._
     */
    function toInt8(int256 value) internal pure returns (int8) {
        require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits");
        return int8(value);
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256");
        return int256(value);
    }
}

File 4 of 17 : PRBMathSD59x18.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathSD59x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18
/// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have
/// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers
/// are bound by the minimum and the maximum values permitted by the Solidity type int256.
library PRBMathSD59x18 {
    /// @dev log2(e) as a signed 59.18-decimal fixed-point number.
    int256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev Half the SCALE number.
    int256 internal constant HALF_SCALE = 5e17;

    /// @dev The maximum value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MAX_SD59x18 =
        57896044618658097711785492504343953926634992332820282019728_792003956564819967;

    /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MAX_WHOLE_SD59x18 =
        57896044618658097711785492504343953926634992332820282019728_000000000000000000;

    /// @dev The minimum value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MIN_SD59x18 =
        -57896044618658097711785492504343953926634992332820282019728_792003956564819968;

    /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant MIN_WHOLE_SD59x18 =
        -57896044618658097711785492504343953926634992332820282019728_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    int256 internal constant SCALE = 1e18;

    /// INTERNAL FUNCTIONS ///

    /// @notice Calculate the absolute value of x.
    ///
    /// @dev Requirements:
    /// - x must be greater than MIN_SD59x18.
    ///
    /// @param x The number to calculate the absolute value for.
    /// @param result The absolute value of x.
    function abs(int256 x) internal pure returns (int256 result) {
        unchecked {
            if (x == MIN_SD59x18) {
                revert PRBMathSD59x18__AbsInputTooSmall();
            }
            result = x < 0 ? -x : x;
        }
    }

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as a signed 59.18-decimal fixed-point number.
    /// @param y The second operand as a signed 59.18-decimal fixed-point number.
    /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number.
    function avg(int256 x, int256 y) internal pure returns (int256 result) {
        // The operations can never overflow.
        unchecked {
            int256 sum = (x >> 1) + (y >> 1);
            if (sum < 0) {
                // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the
                // right rounds down to infinity.
                assembly {
                    result := add(sum, and(or(x, y), 1))
                }
            } else {
                // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5
                // remainder gets truncated twice.
                result = sum + (x & y & 1);
            }
        }
    }

    /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_SD59x18.
    ///
    /// @param x The signed 59.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number.
    function ceil(int256 x) internal pure returns (int256 result) {
        if (x > MAX_WHOLE_SD59x18) {
            revert PRBMathSD59x18__CeilOverflow(x);
        }
        unchecked {
            int256 remainder = x % SCALE;
            if (remainder == 0) {
                result = x;
            } else {
                // Solidity uses C fmod style, which returns a modulus with the same sign as x.
                result = x - remainder;
                if (x > 0) {
                    result += SCALE;
                }
            }
        }
    }

    /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number.
    ///
    /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - All from "PRBMath.mulDiv".
    /// - None of the inputs can be MIN_SD59x18.
    /// - The denominator cannot be zero.
    /// - The result must fit within int256.
    ///
    /// Caveats:
    /// - All from "PRBMath.mulDiv".
    ///
    /// @param x The numerator as a signed 59.18-decimal fixed-point number.
    /// @param y The denominator as a signed 59.18-decimal fixed-point number.
    /// @param result The quotient as a signed 59.18-decimal fixed-point number.
    function div(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == MIN_SD59x18 || y == MIN_SD59x18) {
            revert PRBMathSD59x18__DivInputTooSmall();
        }

        // Get hold of the absolute values of x and y.
        uint256 ax;
        uint256 ay;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
        }

        // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256.
        uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay);
        if (rAbs > uint256(MAX_SD59x18)) {
            revert PRBMathSD59x18__DivOverflow(rAbs);
        }

        // Get the signs of x and y.
        uint256 sx;
        uint256 sy;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
        }

        // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result
        // should be positive. Otherwise, it should be negative.
        result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (int256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// Caveats:
    /// - All from "exp2".
    /// - For any x less than -41.446531673892822322, the result is zero.
    ///
    /// @param x The exponent as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function exp(int256 x) internal pure returns (int256 result) {
        // Without this check, the value passed to "exp2" would be less than -59.794705707972522261.
        if (x < -41_446531673892822322) {
            return 0;
        }

        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathSD59x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            int256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - For any x less than -59.794705707972522261, the result is zero.
    ///
    /// @param x The exponent as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function exp2(int256 x) internal pure returns (int256 result) {
        // This works because 2^(-x) = 1/2^x.
        if (x < 0) {
            // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero.
            if (x < -59_794705707972522261) {
                return 0;
            }

            // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
            unchecked {
                result = 1e36 / exp2(-x);
            }
        } else {
            // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
            if (x >= 192e18) {
                revert PRBMathSD59x18__Exp2InputTooBig(x);
            }

            unchecked {
                // Convert x to the 192.64-bit fixed-point format.
                uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE);

                // Safe to convert the result to int256 directly because the maximum input allowed is 192.
                result = int256(PRBMath.exp2(x192x64));
            }
        }
    }

    /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be greater than or equal to MIN_WHOLE_SD59x18.
    ///
    /// @param x The signed 59.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number.
    function floor(int256 x) internal pure returns (int256 result) {
        if (x < MIN_WHOLE_SD59x18) {
            revert PRBMathSD59x18__FloorUnderflow(x);
        }
        unchecked {
            int256 remainder = x % SCALE;
            if (remainder == 0) {
                result = x;
            } else {
                // Solidity uses C fmod style, which returns a modulus with the same sign as x.
                result = x - remainder;
                if (x < 0) {
                    result -= SCALE;
                }
            }
        }
    }

    /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right
    /// of the radix point for negative numbers.
    /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
    /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number.
    function frac(int256 x) internal pure returns (int256 result) {
        unchecked {
            result = x % SCALE;
        }
    }

    /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE.
    /// - x must be less than or equal to MAX_SD59x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in signed 59.18-decimal fixed-point representation.
    function fromInt(int256 x) internal pure returns (int256 result) {
        unchecked {
            if (x < MIN_SD59x18 / SCALE) {
                revert PRBMathSD59x18__FromIntUnderflow(x);
            }
            if (x > MAX_SD59x18 / SCALE) {
                revert PRBMathSD59x18__FromIntOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_SD59x18, lest it overflows.
    /// - x * y cannot be negative.
    ///
    /// @param x The first operand as a signed 59.18-decimal fixed-point number.
    /// @param y The second operand as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function gm(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            int256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathSD59x18__GmOverflow(x, y);
            }

            // The product cannot be negative.
            if (xy < 0) {
                revert PRBMathSD59x18__GmNegativeProduct(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = int256(PRBMath.sqrt(uint256(xy)));
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as a signed 59.18-decimal fixed-point number.
    function inv(int256 x) internal pure returns (int256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number.
    function ln(int256 x) internal pure returns (int256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 195205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as a signed 59.18-decimal fixed-point number.
    function log10(int256 x) internal pure returns (int256 result) {
        if (x <= 0) {
            revert PRBMathSD59x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            default {
                result := MAX_SD59x18
            }
        }

        if (result == MAX_SD59x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than zero.
    ///
    /// Caveats:
    /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number.
    function log2(int256 x) internal pure returns (int256 result) {
        if (x <= 0) {
            revert PRBMathSD59x18__LogInputTooSmall(x);
        }
        unchecked {
            // This works because log2(x) = -log2(1/x).
            int256 sign;
            if (x >= SCALE) {
                sign = 1;
            } else {
                sign = -1;
                // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
                assembly {
                    x := div(1000000000000000000000000000000000000, x)
                }
            }

            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE));

            // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1.
            result = int256(n) * SCALE;

            // This is y = x * 2^(-n).
            int256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result * sign;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
            result *= sign;
        }
    }

    /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal
    /// fixed-point number.
    ///
    /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is
    /// always 1e18.
    ///
    /// Requirements:
    /// - All from "PRBMath.mulDivFixedPoint".
    /// - None of the inputs can be MIN_SD59x18
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    ///
    /// @param x The multiplicand as a signed 59.18-decimal fixed-point number.
    /// @param y The multiplier as a signed 59.18-decimal fixed-point number.
    /// @return result The product as a signed 59.18-decimal fixed-point number.
    function mul(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == MIN_SD59x18 || y == MIN_SD59x18) {
            revert PRBMathSD59x18__MulInputTooSmall();
        }

        unchecked {
            uint256 ax;
            uint256 ay;
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);

            uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay);
            if (rAbs > uint256(MAX_SD59x18)) {
                revert PRBMathSD59x18__MulOverflow(rAbs);
            }

            uint256 sx;
            uint256 sy;
            assembly {
                sx := sgt(x, sub(0, 1))
                sy := sgt(y, sub(0, 1))
            }
            result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs);
        }
    }

    /// @notice Returns PI as a signed 59.18-decimal fixed-point number.
    function pi() internal pure returns (int256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    /// - z cannot be zero.
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number.
    /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number.
    function pow(int256 x, int256 y) internal pure returns (int256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : int256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - All from "abs" and "PRBMath.mulDivFixedPoint".
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - All from "PRBMath.mulDivFixedPoint".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as a signed 59.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function powu(int256 x, uint256 y) internal pure returns (int256 result) {
        uint256 xAbs = uint256(abs(x));

        // Calculate the first iteration of the loop in advance.
        uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE);

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        uint256 yAux = y;
        for (yAux >>= 1; yAux > 0; yAux >>= 1) {
            xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs);

            // Equivalent to "y % 2 == 1" but faster.
            if (yAux & 1 > 0) {
                rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs);
            }
        }

        // The result must fit within the 59.18-decimal fixed-point representation.
        if (rAbs > uint256(MAX_SD59x18)) {
            revert PRBMathSD59x18__PowuOverflow(rAbs);
        }

        // Is the base negative and the exponent an odd number?
        bool isNegative = x < 0 && y & 1 == 1;
        result = isNegative ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Returns 1 as a signed 59.18-decimal fixed-point number.
    function scale() internal pure returns (int256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x cannot be negative.
    /// - x must be less than MAX_SD59x18 / SCALE.
    ///
    /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as a signed 59.18-decimal fixed-point .
    function sqrt(int256 x) internal pure returns (int256 result) {
        unchecked {
            if (x < 0) {
                revert PRBMathSD59x18__SqrtNegativeInput(x);
            }
            if (x > MAX_SD59x18 / SCALE) {
                revert PRBMathSD59x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed
            // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = int256(PRBMath.sqrt(uint256(x * SCALE)));
        }
    }

    /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The signed 59.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toInt(int256 x) internal pure returns (int256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

File 5 of 17 : ClipperDirectExchange.sol
//SPDX-License-Identifier: Copyright 2021 Shipyard Software, Inc.
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import "./interfaces/WrapperContractInterface.sol";

import "./ClipperCommonExchange.sol";

contract ClipperDirectExchange is ClipperCommonExchange {
  
  using SafeERC20 for IERC20;
  using EnumerableSet for EnumerableSet.AddressSet;

  // For prevention of replay attacks
  mapping(bytes32 => bool) invalidatedDigests;

  constructor(address theSigner, address theWrapper, address[] memory tokens) 
    ClipperCommonExchange(theSigner, theWrapper, tokens)
    {}

  function currentDeltaOverLastBalance(address token) internal view returns (uint256) {
    return IERC20(token).balanceOf(address(this))-lastBalances[token];
  }

  function _sync(address token) internal override {
    lastBalances[token] = IERC20(token).balanceOf(address(this));
  }

  function _syncAll() internal {
    uint i;
    uint n=assetSet.length();
    while(i < n) {
      _sync(tokenAt(i));
      i++;
    }
  }


  // syncAndTransfer() and unwrapAndForwardEth() are the two additional ways tokens leave the pool
  // Since they transfer assets, they are all marked as nonReentrant
  function syncAndTransfer(address inputToken, address outputToken, address recipient, uint256 amount) internal nonReentrant {
    _sync(inputToken);
    IERC20(outputToken).safeTransfer(recipient, amount);
    _sync(outputToken);
  }

  // Essentially transferAsset, but for raw ETH
  function unwrapAndForwardEth(address recipient, uint256 amount) internal nonReentrant {
    /* EFFECTS */
    WrapperContractInterface(WRAPPER_CONTRACT).withdraw(amount);
    _sync(WRAPPER_CONTRACT);
    /* INTERACTIONS */
    safeEthSend(recipient, amount);
  }

  /* DEPOSIT FUNCTIONALITY */
  function deposit(address sender, uint256[] calldata depositAmounts, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) public payable override {
    // Wrap if it's there
    if(msg.value > 0){
      safeEthSend(WRAPPER_CONTRACT, msg.value);
    }
    require(msg.sender==sender, "Listed sender does not match msg.sender");
    // Did we actually deposit what we said we would? Revert otherwise
    verifyDepositAmounts(depositAmounts);
    // Check the signature
    bytes32 depositDigest = createDepositDigest(sender, depositAmounts, nDays, poolTokens, goodUntil);
    // Revert if it's signed by the wrong address
    verifyDigestSignature(depositDigest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(depositDigest, goodUntil);
    // OK now we're good
    _syncAll();
    _mintOrVesting(sender, nDays, poolTokens);
    emit Deposited(sender, poolTokens, nDays);
  }

  function depositSingleAsset(address sender, address inputToken, uint256 inputAmount, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) public payable override {
    // Wrap if it's there
    if(msg.value > 0){
      safeEthSend(WRAPPER_CONTRACT, msg.value);
    }
    require(msg.sender==sender && isToken(inputToken), "Invalid input");

    // Did we actually deposit what we said we would? Revert otherwise
    uint256 delta = currentDeltaOverLastBalance(inputToken);
    require(delta >= inputAmount, "Insufficient token deposit");

    // Check the signature
    bytes32 depositDigest = createSingleDepositDigest(sender, inputToken, inputAmount, nDays, poolTokens, goodUntil);
    // Revert if it's signed by the wrong address
    verifyDigestSignature(depositDigest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(depositDigest, goodUntil);

    // OK now we're good
    _sync(inputToken);
    _mintOrVesting(sender, nDays, poolTokens);
    emit Deposited(sender, poolTokens, nDays);
  }

  function verifyDepositAmounts(uint256[] calldata depositAmounts) internal view {
    uint i=0;
    uint n = depositAmounts.length;
    while(i < n){
      uint256 myDeposit = depositAmounts[i];
      if(myDeposit > 0){
        address token = tokenAt(i);
        uint256 delta = currentDeltaOverLastBalance(token);
        require(delta >= myDeposit, "Insufficient token deposit");
      }
      i++;
    }
  }

  /* Single asset withdrawal functionality */
  function withdrawSingleAsset(address tokenHolder, uint256 poolTokenAmountToBurn, address assetAddress, uint256 assetAmount, uint256 goodUntil, Signature calldata theSignature) external override {
    // Make sure the withdrawer is allowed
    require(msg.sender==tokenHolder, "tokenHolder does not match msg.sender");
    
    bool sendEthBack;
    if(assetAddress == CLIPPER_ETH_SIGIL) {
      assetAddress = WRAPPER_CONTRACT;
      sendEthBack = true;
    }

    // Check the signature
    bytes32 withdrawalDigest = createWithdrawalDigest(tokenHolder, poolTokenAmountToBurn, assetAddress, assetAmount, goodUntil);
    // Reverts if it's signed by the wrong address
    verifyDigestSignature(withdrawalDigest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(withdrawalDigest, goodUntil);
    // Reverts if balance is insufficient
    _burn(msg.sender, poolTokenAmountToBurn);
    // Reverts if balance is insufficient
    // syncs done automatically on transfer
    if(sendEthBack){
      unwrapAndForwardEth(msg.sender, assetAmount);
    } else {
      transferAsset(assetAddress, msg.sender, assetAmount);
    }

    emit AssetWithdrawn(tokenHolder, poolTokenAmountToBurn, assetAddress, assetAmount);
  }

  /* SWAP Functionality */

  // Don't need a separate "transmit" function here since it's already payable
  function sellEthForToken(address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external payable override {
    // Wrap ETH (as balance or value) as input
    safeEthSend(WRAPPER_CONTRACT, inputAmount);
    swap(WRAPPER_CONTRACT, outputToken, inputAmount, outputAmount, goodUntil, destinationAddress, theSignature, auxiliaryData);
  }

  // Mostly copied from swap functionality
  function sellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external virtual override {
    (uint256 actualInput, uint256 fairOutput) = verifyTokensAndGetAmounts(inputToken, WRAPPER_CONTRACT, inputAmount, outputAmount);
    
    bytes32 digest = createSwapDigest(inputToken, WRAPPER_CONTRACT, inputAmount, outputAmount, goodUntil, destinationAddress);
    // Revert if it's signed by the wrong address
    verifyDigestSignature(digest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(digest, goodUntil);
    
    // We have to _sync the input token manually here
    _sync(inputToken);
    unwrapAndForwardEth(destinationAddress, fairOutput);

    emit Swapped(inputToken, WRAPPER_CONTRACT, destinationAddress, actualInput, fairOutput, auxiliaryData);
  }

  function transmitAndDepositSingleAsset(address inputToken, uint256 inputAmount, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) external override{
    IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
    depositSingleAsset(msg.sender, inputToken, inputAmount, nDays, poolTokens, goodUntil, theSignature);
  }

  function transmitAndSellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external override {
    IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
    this.sellTokenForEth(inputToken, inputAmount, outputAmount, goodUntil, destinationAddress, theSignature, auxiliaryData);
  }

  // all-in-one transfer from msg.sender to destinationAddress.
  function transmitAndSwap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external override {
    IERC20(inputToken).safeTransferFrom(msg.sender, address(this), inputAmount);
    swap(inputToken, outputToken, inputAmount, outputAmount, goodUntil, destinationAddress, theSignature, auxiliaryData);
  }

  function swap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) public virtual override {
    // Revert if the tokens don't exist
    (uint256 actualInput, uint256 fairOutput) = verifyTokensAndGetAmounts(inputToken, outputToken, inputAmount, outputAmount);
    
    bytes32 digest = createSwapDigest(inputToken, outputToken, inputAmount, outputAmount, goodUntil, destinationAddress);
    // Revert if it's signed by the wrong address
    verifyDigestSignature(digest, theSignature);
    // Revert if it's a replay, or if the timestamp is too late
    checkTimestampAndInvalidateDigest(digest, goodUntil);
    // OK, now we are safe to transfer
    syncAndTransfer(inputToken, outputToken, destinationAddress, fairOutput);
    emit Swapped(inputToken, outputToken, destinationAddress, actualInput, fairOutput, auxiliaryData);
  }

  function verifyTokensAndGetAmounts(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount) internal view returns (uint256 actualInput, uint256 fairOutput) {
    require(isToken(inputToken) && isToken(outputToken), "Tokens not present in pool");
    actualInput = currentDeltaOverLastBalance(inputToken);
    fairOutput = calculateFairOutput(inputAmount, actualInput, outputAmount);
  }

  // Used to invalidate swap and deposit digests
  function checkTimestampAndInvalidateDigest(bytes32 theDigest, uint256 goodUntil) internal {
    require(!invalidatedDigests[theDigest], "Message digest already present");
    require(goodUntil >= block.timestamp, "Message received after allowed timestamp");
    invalidatedDigests[theDigest] = true;
  }

}

File 6 of 17 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 7 of 17 : PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

File 8 of 17 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 9 of 17 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);

        uint256 currentAllowance = _allowances[sender][_msgSender()];
        require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
        unchecked {
            _approve(sender, _msgSender(), currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        uint256 currentAllowance = _allowances[_msgSender()][spender];
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(_msgSender(), spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        uint256 senderBalance = _balances[sender];
        require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[sender] = senderBalance - amount;
        }
        _balances[recipient] += amount;

        emit Transfer(sender, recipient, amount);

        _afterTokenTransfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 10 of 17 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 11 of 17 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        } else if (error == RecoverError.InvalidSignatureV) {
            revert("ECDSA: invalid signature 'v' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        // Check the signature length
        // - case 65: r,s,v signature (standard)
        // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else if (signature.length == 64) {
            bytes32 r;
            bytes32 vs;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly {
                r := mload(add(signature, 0x20))
                vs := mload(add(signature, 0x40))
            }
            return tryRecover(hash, r, vs);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s;
        uint8 v;
        assembly {
            s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            v := add(shr(255, vs), 27)
        }
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }
        if (v != 27 && v != 28) {
            return (address(0), RecoverError.InvalidSignatureV);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 12 of 17 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol)

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastvalue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastvalue;
                // Update the index for the moved value
                set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        return _values(set._inner);
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly {
            result := store
        }

        return result;
    }
}

File 13 of 17 : WrapperContractInterface.sol
//SPDX-License-Identifier: Copyright 2021 Shipyard Software, Inc.
pragma solidity ^0.8.0;

interface WrapperContractInterface {
  function withdraw(uint256 amount) external;
}

File 14 of 17 : ClipperCommonExchange.sol
//SPDX-License-Identifier: Copyright 2021 Shipyard Software, Inc.
pragma solidity ^0.8.0;


import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import "./interfaces/WrapperContractInterface.sol";

abstract contract ClipperCommonExchange is ERC20, ReentrancyGuard {

  using SafeERC20 for IERC20;
  using EnumerableSet for EnumerableSet.AddressSet;

  struct Signature {
    uint8 v;
    bytes32 r;
    bytes32 s;
  }

  struct Deposit {
      uint lockedUntil;
      uint256 poolTokenAmount;
  }

  uint256 constant ONE_IN_TEN_DECIMALS = 1e10;
  // Allow for inputs up to 0.5% more than quoted values to have scaled output.
  // Inputs higher than this value just get 0.5% more.
  uint256 constant MAX_ALLOWED_OVER_TEN_DECIMALS = ONE_IN_TEN_DECIMALS+50*1e6;

  // Signer is passed in on construction, hence "immutable"
  address immutable public DESIGNATED_SIGNER;
  address immutable public WRAPPER_CONTRACT;
  // Constant values for EIP-712 signing
  bytes32 immutable DOMAIN_SEPARATOR;
  string constant VERSION = '1.0.0';
  string constant NAME = 'ClipperDirect';

  address constant CLIPPER_ETH_SIGIL = address(0);

  bytes32 constant EIP712DOMAIN_TYPEHASH = keccak256(
     abi.encodePacked("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")
  );

  bytes32 constant OFFERSTRUCT_TYPEHASH = keccak256(
    abi.encodePacked("OfferStruct(address input_token,address output_token,uint256 input_amount,uint256 output_amount,uint256 good_until,address destination_address)")
  );

  bytes32 constant DEPOSITSTRUCT_TYPEHASH = keccak256(
    abi.encodePacked("DepositStruct(address sender,uint256[] deposit_amounts,uint256 days_locked,uint256 pool_tokens,uint256 good_until)")
  );

  bytes32 constant SINGLEDEPOSITSTRUCT_TYPEHASH = keccak256(
    abi.encodePacked("SingleDepositStruct(address sender,address token,uint256 amount,uint256 days_locked,uint256 pool_tokens,uint256 good_until)")
  );

  bytes32 constant WITHDRAWALSTRUCT_TYPEHASH = keccak256(
    abi.encodePacked("WithdrawalStruct(address token_holder,uint256 pool_token_amount_to_burn,address asset_address,uint256 asset_amount,uint256 good_until)")
  );

  // Assets
  // lastBalances: used for "transmit then swap then sync" modality
  // assetSet is a set of keys that have lastBalances
  mapping(address => uint256) public lastBalances;
  EnumerableSet.AddressSet assetSet;


  // Allows lookup
  mapping(address => Deposit) public vestingDeposits;

  // Events
  event Swapped(
    address indexed inAsset,
    address indexed outAsset,
    address indexed recipient,
    uint256 inAmount,
    uint256 outAmount,
    bytes auxiliaryData
  );

  event Deposited(
    address indexed depositor,
    uint256 poolTokens,
    uint256 nDays
  );

  event Withdrawn(
    address indexed withdrawer,
    uint256 poolTokens,
    uint256 fractionOfPool
  );

  event AssetWithdrawn(
    address indexed withdrawer,
    uint256 poolTokens,    
    address indexed assetAddress,
    uint256 assetAmount
  );

  // Take in the designated signer address and the token list
  constructor(address theSigner, address theWrapper, address[] memory tokens) ERC20("ClipperDirect Pool Token", "CLPRDRPL") {
    DESIGNATED_SIGNER = theSigner;
    uint i;
    uint n = tokens.length;
    while(i < n) {
        assetSet.add(tokens[i]);
        i++;
    }
    DOMAIN_SEPARATOR = createDomainSeparator(NAME, VERSION, address(this));
    WRAPPER_CONTRACT = theWrapper;
  }

  // Allows the receipt of ETH directly
  receive() external payable {
  }

  function safeEthSend(address recipient, uint256 howMuch) internal {
    (bool success, ) = payable(recipient).call{value: howMuch}("");
    require(success, "Call with value failed");
  }

  /* TOKEN AND ASSET FUNCTIONS */
  function nTokens() public view returns (uint) {
    return assetSet.length();
  }

  function tokenAt(uint i) public view returns (address) {
    return assetSet.at(i);
  }

  function isToken(address token) public view returns (bool) {
    return assetSet.contains(token);
  }

  function _sync(address token) internal virtual;

  // Can be overridden as in Caravel
  function getLastBalance(address token) public view virtual returns (uint256) {
    return lastBalances[token];
  }

  function allTokensBalance() external view returns (uint256[] memory, address[] memory, uint256){
    uint n = nTokens();
    uint256[] memory balances = new uint256[](n);
    address[] memory tokens = new address[](n);
    for (uint i = 0; i < n; i++) {
      address token = tokenAt(i);
      balances[i] = getLastBalance(token);
      tokens[i] = token;
    }

    return (balances, tokens, totalSupply());
  }

  // nonReentrant asset transfer
  function transferAsset(address token, address recipient, uint256 amount) internal nonReentrant {
    IERC20(token).safeTransfer(recipient, amount);
    // We never want to transfer an asset without sync'ing
    _sync(token);
  }

  function calculateFairOutput(uint256 statedInput, uint256 actualInput, uint256 statedOutput) internal pure returns (uint256) {
    if(actualInput == statedInput) {
      return statedOutput;
    } else {
      uint256 theFraction = (ONE_IN_TEN_DECIMALS*actualInput)/statedInput;
      if(theFraction >= MAX_ALLOWED_OVER_TEN_DECIMALS) {
        return (MAX_ALLOWED_OVER_TEN_DECIMALS*statedOutput)/ONE_IN_TEN_DECIMALS;
      } else {
        return (theFraction*statedOutput)/ONE_IN_TEN_DECIMALS;
      }
    }
  }

  /* DEPOSIT FUNCTIONALITY */
  function canUnlockDeposit(address theAddress) public view returns (bool) {
      Deposit storage myDeposit = vestingDeposits[theAddress];
      return (myDeposit.poolTokenAmount > 0) && (myDeposit.lockedUntil <= block.timestamp);
  }

  function unlockDeposit() external returns (uint256 poolTokens) {
    require(canUnlockDeposit(msg.sender), "ClipperDirect: Deposit cannot be unlocked");
    poolTokens = vestingDeposits[msg.sender].poolTokenAmount;
    delete vestingDeposits[msg.sender];

    _transfer(address(this), msg.sender, poolTokens);
  }

  function _mintOrVesting(address sender, uint256 nDays, uint256 poolTokens) internal {
    if(nDays==0){
      // No vesting period required - mint tokens directly for the user
      _mint(sender, poolTokens);
    } else {
      // Set up a vesting deposit for the sender
      _createVestingDeposit(sender, nDays, poolTokens);
    }
  }

  // Mints tokens to this contract to hold for vesting
  function _createVestingDeposit(address theAddress, uint256 nDays, uint256 numPoolTokens) internal {
    require(nDays > 0, "ClipperDirect: Cannot create vesting deposit without positive vesting period");
    require(vestingDeposits[theAddress].poolTokenAmount==0, "ClipperDirect: Depositor already has an active deposit");

    Deposit memory myDeposit = Deposit({
      lockedUntil: block.timestamp + (nDays * 1 days),
      poolTokenAmount: numPoolTokens
    });
    vestingDeposits[theAddress] = myDeposit;
    _mint(address(this), numPoolTokens);
  }

  function transmitAndDeposit(uint256[] calldata depositAmounts, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) external {
    uint i=0;
    uint n = depositAmounts.length;
    while(i < n){
      uint256 transferAmount = depositAmounts[i];
      if(transferAmount > 0){
        IERC20(tokenAt(i)).safeTransferFrom(msg.sender, address(this), transferAmount);
      }
      i++;
    }
    deposit(msg.sender, depositAmounts, nDays, poolTokens, goodUntil, theSignature);
  }

  function transmitAndDepositSingleAsset(address inputToken, uint256 inputAmount, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) external virtual;

  function deposit(address sender, uint256[] calldata depositAmounts, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) public payable virtual;

  function depositSingleAsset(address sender, address inputToken, uint256 inputAmount, uint256 nDays, uint256 poolTokens, uint256 goodUntil, Signature calldata theSignature) public payable virtual;

  /* WITHDRAWAL FUNCTIONALITY */
  function _proportionalWithdrawal(uint256 myFraction) internal {
    uint256 toTransfer;

    uint i;
    uint n = nTokens();
    while(i < n) {
        address theToken = tokenAt(i);
        toTransfer = (myFraction*getLastBalance(theToken)) / ONE_IN_TEN_DECIMALS;
        // syncs done automatically on transfer
        transferAsset(theToken, msg.sender, toTransfer);
        i++;
    }
  }

  function burnToWithdraw(uint256 amount) external {
    // Capture the fraction first, before burning
    uint256 theFractionBaseTen = (ONE_IN_TEN_DECIMALS*amount)/totalSupply();
    
    // Reverts if balance is insufficient
    _burn(msg.sender, amount);

    _proportionalWithdrawal(theFractionBaseTen);
    emit Withdrawn(msg.sender, amount, theFractionBaseTen);
  }

  function withdrawSingleAsset(address tokenHolder, uint256 poolTokenAmountToBurn, address assetAddress, uint256 assetAmount, uint256 goodUntil, Signature calldata theSignature) external virtual;

  /* SWAP Functionality: Virtual */
  function sellEthForToken(address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external payable virtual;
  function sellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external virtual;
  function transmitAndSellTokenForEth(address inputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external virtual;
  function transmitAndSwap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) external virtual;
  function swap(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress, Signature calldata theSignature, bytes calldata auxiliaryData) public virtual;

  /* SIGNING Functionality */
  function createDomainSeparator(string memory name, string memory version, address theSigner) internal view returns (bytes32) {
    return keccak256(abi.encode(
        EIP712DOMAIN_TYPEHASH,
        keccak256(abi.encodePacked(name)),
        keccak256(abi.encodePacked(version)),
        uint256(block.chainid),
        theSigner
      ));
  }

  function hashInputOffer(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress) internal pure returns (bytes32) {
    return keccak256(abi.encode(
            OFFERSTRUCT_TYPEHASH,
            inputToken,
            outputToken,
            inputAmount,
            outputAmount,
            goodUntil,
            destinationAddress
        ));
  }

  function hashDeposit(address sender, uint256[] calldata depositAmounts, uint256 daysLocked, uint256 poolTokens, uint256 goodUntil) internal pure returns (bytes32) {
    bytes32 depositAmountsHash = keccak256(abi.encodePacked(depositAmounts));
    return keccak256(abi.encode(
        DEPOSITSTRUCT_TYPEHASH,
        sender,
        depositAmountsHash,
        daysLocked,
        poolTokens,
        goodUntil
      ));
  }

  function hashSingleDeposit(address sender, address inputToken, uint256 inputAmount, uint256 daysLocked, uint256 poolTokens, uint256 goodUntil) internal pure returns (bytes32) {
    return keccak256(abi.encode(
        SINGLEDEPOSITSTRUCT_TYPEHASH,
        sender,
        inputToken,
        inputAmount,
        daysLocked,
        poolTokens,
        goodUntil
      ));
  }

  function hashWithdrawal(address tokenHolder, uint256 poolTokenAmountToBurn, address assetAddress, uint256 assetAmount,
                    uint256 goodUntil) internal pure returns (bytes32) {
    return keccak256(abi.encode(
        WITHDRAWALSTRUCT_TYPEHASH,
        tokenHolder,
        poolTokenAmountToBurn,
        assetAddress,
        assetAmount,
        goodUntil
      ));
  }

  function createSwapDigest(address inputToken, address outputToken, uint256 inputAmount, uint256 outputAmount, uint256 goodUntil, address destinationAddress) internal view returns (bytes32 digest){
    bytes32 hashedInput = hashInputOffer(inputToken, outputToken, inputAmount, outputAmount, goodUntil, destinationAddress);    
    digest = ECDSA.toTypedDataHash(DOMAIN_SEPARATOR, hashedInput);
  }

  function createDepositDigest(address sender, uint256[] calldata depositAmounts, uint256 nDays, uint256 poolTokens, uint256 goodUntil) internal view returns (bytes32 depositDigest){
    bytes32 hashedInput = hashDeposit(sender, depositAmounts, nDays, poolTokens, goodUntil);    
    depositDigest = ECDSA.toTypedDataHash(DOMAIN_SEPARATOR, hashedInput);
  }

  function createSingleDepositDigest(address sender, address inputToken, uint256 inputAmount, uint256 nDays, uint256 poolTokens, uint256 goodUntil) internal view returns (bytes32 depositDigest){
    bytes32 hashedInput = hashSingleDeposit(sender, inputToken, inputAmount, nDays, poolTokens, goodUntil);
    depositDigest = ECDSA.toTypedDataHash(DOMAIN_SEPARATOR, hashedInput);
  }

  function createWithdrawalDigest(address tokenHolder, uint256 poolTokenAmountToBurn, address assetAddress, uint256 assetAmount,
                    uint256 goodUntil) internal view returns (bytes32 withdrawalDigest){
    bytes32 hashedInput = hashWithdrawal(tokenHolder, poolTokenAmountToBurn, assetAddress, assetAmount, goodUntil);
    withdrawalDigest = ECDSA.toTypedDataHash(DOMAIN_SEPARATOR, hashedInput);
  }

  function verifyDigestSignature(bytes32 theDigest, Signature calldata theSignature) internal view {
    address signingAddress = ecrecover(theDigest, theSignature.v, theSignature.r, theSignature.s);

    require(signingAddress==DESIGNATED_SIGNER, "Message signed by incorrect address");
  }

}

File 15 of 17 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 16 of 17 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Address.sol)

pragma solidity ^0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        assembly {
            size := extcodesize(account)
        }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 17 of 17 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)

pragma solidity ^0.8.0;

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol

        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0x00";
        }
        uint256 temp = value;
        uint256 length = 0;
        while (temp != 0) {
            length++;
            temp >>= 8;
        }
        return toHexString(value, length);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _HEX_SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"theSigner","type":"address"},{"internalType":"address","name":"theWrapper","type":"address"},{"internalType":"address[]","name":"tokens","type":"address[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"int256","name":"x","type":"int256"}],"name":"PRBMathSD59x18__LogInputTooSmall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"withdrawer","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokens","type":"uint256"},{"indexed":true,"internalType":"address","name":"assetAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"assetAmount","type":"uint256"}],"name":"AssetWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"depositor","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nDays","type":"uint256"}],"name":"Deposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"inAsset","type":"address"},{"indexed":true,"internalType":"address","name":"outAsset","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"inAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"outAmount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"Swapped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"withdrawer","type":"address"},{"indexed":false,"internalType":"uint256","name":"poolTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fractionOfPool","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"DESIGNATED_SIGNER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WRAPPER_CONTRACT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allTokensBalance","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnToWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"theAddress","type":"address"}],"name":"canUnlockDeposit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256[]","name":"depositAmounts","type":"uint256[]"},{"internalType":"uint256","name":"nDays","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"}],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"nDays","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"}],"name":"depositSingleAsset","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getLastBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"sellEthForToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"packedGoodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"sellTokenForEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"packedGoodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"tokenAt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"depositAmounts","type":"uint256[]"},{"internalType":"uint256","name":"nDays","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"}],"name":"transmitAndDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"nDays","type":"uint256"},{"internalType":"uint256","name":"poolTokens","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"}],"name":"transmitAndDepositSingleAsset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"transmitAndSellTokenForEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"internalType":"address","name":"destinationAddress","type":"address"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"},{"internalType":"bytes","name":"auxiliaryData","type":"bytes"}],"name":"transmitAndSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlockDeposit","outputs":[{"internalType":"uint256","name":"poolTokens","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"packedGoodUntil","type":"uint256"}],"name":"unpackGoodUntil","outputs":[{"internalType":"uint256","name":"pX","type":"uint256"},{"internalType":"uint256","name":"pY","type":"uint256"},{"internalType":"uint256","name":"wX","type":"uint256"},{"internalType":"uint256","name":"wY","type":"uint256"},{"internalType":"uint256","name":"k","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vestingDeposits","outputs":[{"internalType":"uint256","name":"lockedUntil","type":"uint256"},{"internalType":"uint256","name":"poolTokenAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenHolder","type":"address"},{"internalType":"uint256","name":"poolTokenAmountToBurn","type":"uint256"},{"internalType":"address","name":"assetAddress","type":"address"},{"internalType":"uint256","name":"assetAmount","type":"uint256"},{"internalType":"uint256","name":"goodUntil","type":"uint256"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct ClipperCommonExchange.Signature","name":"theSignature","type":"tuple"}],"name":"withdrawSingleAsset","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60e06040523480156200001157600080fd5b5060405162004ae238038062004ae283398101604081905262000034916200041c565b8282828282826040518060400160405280601881526020017f436c697070657244697265637420506f6f6c20546f6b656e00000000000000008152506040518060400160405280600881526020016710d314149114941360c21b8152508160039080519060200190620000a992919062000359565b508051620000bf90600490602084019062000359565b50506001600555506001600160601b0319606084901b1660805280516000905b8082101562000141576200012b8383815181106200010d57634e487b7160e01b600052603260045260246000fd5b60200260200101516007620001ba60201b620014261790919060201c565b5081620001388162000591565b925050620000df565b620001966040518060400160405280600d81526020016c10db1a5c1c195c911a5c9958dd609a1b815250604051806040016040528060058152602001640312e302e360dc1b81525030620001da60201b60201c565b60c05250505060601b6001600160601b03191660a05250620005cf95505050505050565b6000620001d1836001600160a01b03841662000307565b90505b92915050565b600060405160200162000251907f454950373132446f6d61696e28737472696e67206e616d652c737472696e672081527f76657273696f6e2c75696e7432353620636861696e49642c6164647265737320602082015271766572696679696e67436f6e74726163742960701b604082015260520190565b60405160208183030381529060405280519060200120846040516020016200027a919062000518565b6040516020818303038152906040528051906020012084604051602001620002a3919062000518565b60408051601f1981840301815282825280516020918201209083019490945281019190915260608101919091524660808201526001600160a01b03831660a082015260c0016040516020818303038152906040528051906020012090509392505050565b60008181526001830160205260408120546200035057508154600181810184556000848152602080822090930184905584548482528286019093526040902091909155620001d4565b506000620001d4565b828054620003679062000554565b90600052602060002090601f0160209004810192826200038b5760008555620003d6565b82601f10620003a657805160ff1916838001178555620003d6565b82800160010185558215620003d6579182015b82811115620003d6578251825591602001919060010190620003b9565b50620003e4929150620003e8565b5090565b5b80821115620003e45760008155600101620003e9565b80516001600160a01b03811681146200041757600080fd5b919050565b60008060006060848603121562000431578283fd5b6200043c84620003ff565b925060206200044d818601620003ff565b60408601519093506001600160401b03808211156200046a578384fd5b818701915087601f8301126200047e578384fd5b815181811115620004935762000493620005b9565b8060051b604051601f19603f83011681018181108582111715620004bb57620004bb620005b9565b604052828152858101935084860182860187018c1015620004da578788fd5b8795505b838610156200050757620004f281620003ff565b855260019590950194938601938601620004de565b508096505050505050509250925092565b60008251815b818110156200053a57602081860181015185830152016200051e565b81811115620005495782828501525b509190910192915050565b600181811c908216806200056957607f821691505b602082108114156200058b57634e487b7160e01b600052602260045260246000fd5b50919050565b6000600019821415620005b257634e487b7160e01b81526011600452602481fd5b5060010190565b634e487b7160e01b600052604160045260246000fd5b60805160601c60a05160601c60c0516144826200066060003960008181611b59015261223c0152600081816104d701528181610a3f01528181610a6901528181610d6601528181610d9901528181610dc901528181610e2601528181610eae01528181611045015281816111230152818161205b01526120c401526000818161058c0152611bfe01526144826000f3fe6080604052600436106101fd5760003560e01c80634cb6864c1161010d57806395d89b41116100a0578063c325a5491161006f578063c325a54914610643578063c72da66a1461068c578063dd62ed3e146106ac578063eb1c6453146106f2578063ecc7633d1461071257600080fd5b806395d89b41146105ce578063a457c2d7146105e3578063a9059cbb14610603578063c0d5ebfd1461062357600080fd5b806370a08231116100dc57806370a082311461053157806387e08c25146105675780638dda8f3f1461057a57806392a91a3a146105ae57600080fd5b80634cb6864c146104925780635250d730146104b25780635aecdda5146104c557806362fb4e011461051157600080fd5b806329d0c8fc11610190578063368dfc181161015f578063368dfc18146103a35780633721f29c146103c3578063377a368c1461043d57806339509351146104525780633b26e4eb1461047257600080fd5b806329d0c8fc146103115780632b651a6c14610331578063313ce5671461035157806334cb3d7f1461036d57600080fd5b80631b6a8759116101cc5780631b6a8759146102a35780631dc6f5a5146102b857806323b872dd146102dc57806327a9b424146102fc57600080fd5b806306fdde0314610209578063095ea7b31461023457806318160ddd1461026457806319f373611461028357600080fd5b3661020457005b600080fd5b34801561021557600080fd5b5061021e61073f565b60405161022b91906140da565b60405180910390f35b34801561024057600080fd5b5061025461024f366004613d13565b6107d1565b604051901515815260200161022b565b34801561027057600080fd5b506002545b60405190815260200161022b565b34801561028f57600080fd5b5061025461029e366004613b08565b6107e8565b3480156102af57600080fd5b506102756107f5565b3480156102c457600080fd5b506102cd610806565b60405161022b9392919061404e565b3480156102e857600080fd5b506102546102f7366004613b54565b610989565b61030f61030a366004613d9c565b610a3a565b005b34801561031d57600080fd5b5061030f61032c366004613e7c565b610a9f565b34801561033d57600080fd5b5061030f61034c366004613b8f565b610b21565b34801561035d57600080fd5b506040516012815260200161022b565b34801561037957600080fd5b50610275610388366004613b08565b6001600160a01b031660009081526006602052604090205490565b3480156103af57600080fd5b5061030f6103be366004613efe565b610be1565b3480156103cf57600080fd5b506104156103de366004613efe565b60c081901c9167ffffffffffffffff608083901c81169261ffff603082901c811693602083901c9091169260409290921c90911690565b604080519586526020860194909452928401919091526060830152608082015260a00161022b565b34801561044957600080fd5b50610275610c59565b34801561045e57600080fd5b5061025461046d366004613d13565b610cf0565b34801561047e57600080fd5b5061030f61048d366004613b8f565b610d2c565b34801561049e57600080fd5b5061030f6104ad366004613d9c565b610d5d565b61030f6104c0366004613ca0565b610ea3565b3480156104d157600080fd5b506104f97f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b03909116815260200161022b565b34801561051d57600080fd5b5061030f61052c366004613d3c565b610fcc565b34801561053d57600080fd5b5061027561054c366004613b08565b6001600160a01b031660009081526020819052604090205490565b61030f610575366004613c35565b611118565b34801561058657600080fd5b506104f97f000000000000000000000000000000000000000000000000000000000000000081565b3480156105ba57600080fd5b506104f96105c9366004613efe565b611286565b3480156105da57600080fd5b5061021e611293565b3480156105ef57600080fd5b506102546105fe366004613d13565b6112a2565b34801561060f57600080fd5b5061025461061e366004613d13565b61133b565b34801561062f57600080fd5b5061030f61063e366004613e2f565b611348565b34801561064f57600080fd5b5061067761065e366004613b08565b6009602052600090815260409020805460019091015482565b6040805192835260208301919091520161022b565b34801561069857600080fd5b5061030f6106a7366004613d9c565b611374565b3480156106b857600080fd5b506102756106c7366004613b22565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b3480156106fe57600080fd5b5061025461070d366004613b08565b6113f6565b34801561071e57600080fd5b5061027561072d366004613b08565b60066020526000908152604090205481565b60606003805461074e906143be565b80601f016020809104026020016040519081016040528092919081815260200182805461077a906143be565b80156107c75780601f1061079c576101008083540402835291602001916107c7565b820191906000526020600020905b8154815290600101906020018083116107aa57829003601f168201915b5050505050905090565b60006107de33848461143b565b5060015b92915050565b60006107e260078361155f565b60006108016007611581565b905090565b6060806000806108146107f5565b905060008167ffffffffffffffff81111561083f57634e487b7160e01b600052604160045260246000fd5b604051908082528060200260200182016040528015610868578160200160208202803683370190505b50905060008267ffffffffffffffff81111561089457634e487b7160e01b600052604160045260246000fd5b6040519080825280602002602001820160405280156108bd578160200160208202803683370190505b50905060005b8381101561096f5760006108d682611286565b90506108f7816001600160a01b031660009081526006602052604090205490565b84838151811061091757634e487b7160e01b600052603260045260246000fd5b6020026020010181815250508083838151811061094457634e487b7160e01b600052603260045260246000fd5b6001600160a01b03909216602092830291909101909101525080610967816143f3565b9150506108c3565b50818161097b60025490565b955095509550505050909192565b600061099684848461158b565b6001600160a01b038416600090815260016020908152604080832033845290915290205482811015610a205760405162461bcd60e51b815260206004820152602860248201527f45524332303a207472616e7366657220616d6f756e74206578636565647320616044820152676c6c6f77616e636560c01b60648201526084015b60405180910390fd5b610a2d853385840361143b565b60019150505b9392505050565b610a647f00000000000000000000000000000000000000000000000000000000000000008861175b565b610a957f00000000000000000000000000000000000000000000000000000000000000008989898989898989610b21565b5050505050505050565b6000855b80821015610b12576000888884818110610acd57634e487b7160e01b600052603260045260246000fd5b9050602002013590506000811115610aff57610aff333083610aee87611286565b6001600160a01b03169291906117fc565b82610b09816143f3565b93505050610aa3565b610a9533898989898989610ea3565b600080610b308b8b8b8b611867565b915091506000610b438c848d858c6118f0565b90506000610b558d8d8d8d8d8d611b41565b9050610b618188611b8a565b610b6b8183611c89565b610b778d8d8a86611d65565b876001600160a01b03168c6001600160a01b03168e6001600160a01b03167f4be05c8d54f5e056ab2cfa033e9f582057001268c3e28561bb999d35d2c8f2c887878b8b604051610bca9493929190614144565b60405180910390a450505050505050505050505050565b6000610bec60025490565b610bfb836402540be400614339565b610c0591906141b4565b9050610c113383611dbe565b610c1a81611f0c565b604080518381526020810183905233917f92ccf450a286a957af52509bc1c9939d1a6a481783e142e41e2499f0bb66ebc6910160405180910390a25050565b6000610c64336113f6565b610cc25760405162461bcd60e51b815260206004820152602960248201527f436c69707065724469726563743a204465706f7369742063616e6e6f74206265604482015268081d5b9b1bd8dad95960ba1b6064820152608401610a17565b50336000818152600960205260408120600181018054918390559190915590610ced9030908361158b565b90565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916107de918590610d2790869061416e565b61143b565b610d416001600160a01b038a1633308a6117fc565b610d52898989898989898989610b21565b505050505050505050565b600080610d8c8a7f00000000000000000000000000000000000000000000000000000000000000008b8b611867565b915091506000610dbf8b847f0000000000000000000000000000000000000000000000000000000000000000858c6118f0565b90506000610df18c7f00000000000000000000000000000000000000000000000000000000000000008d8d8d8d611b41565b9050610dfd8188611b8a565b610e078183611c89565b610e108c611f8a565b610e1a888461201d565b876001600160a01b03167f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168d6001600160a01b03167f4be05c8d54f5e056ab2cfa033e9f582057001268c3e28561bb999d35d2c8f2c887878b8b604051610e8d9493929190614144565b60405180910390a4505050505050505050505050565b3415610ed357610ed37f00000000000000000000000000000000000000000000000000000000000000003461175b565b336001600160a01b03881614610f3b5760405162461bcd60e51b815260206004820152602760248201527f4c69737465642073656e64657220646f6573206e6f74206d61746368206d73676044820152661739b2b73232b960c91b6064820152608401610a17565b610f4586866120fb565b6000610f558888888888886121bb565b9050610f618183611b8a565b610f6b8184611c89565b610f736121cc565b610f7e88868661220b565b60408051858152602081018790526001600160a01b038a16917f73a19dd210f1a7f902193214c0ee91dd35ee5b4d920cba8d519eca65a7b488ca910160405180910390a25050505050505050565b336001600160a01b038716146110325760405162461bcd60e51b815260206004820152602560248201527f746f6b656e486f6c64657220646f6573206e6f74206d61746368206d73672e7360448201526432b73232b960d91b6064820152608401610a17565b60006001600160a01b03851661106957507f0000000000000000000000000000000000000000000000000000000000000000935060015b60006110788888888888612225565b90506110848184611b8a565b61108e8185611c89565b6110983388611dbe565b81156110ad576110a8338661201d565b6110b8565b6110b886338761226c565b856001600160a01b0316886001600160a01b03167f41e79959bad1d45680578f8a544fb5af76d72b04090e65a51b4d0eaab959a9ab8988604051611106929190918252602082015260400190565b60405180910390a35050505050505050565b3415611148576111487f00000000000000000000000000000000000000000000000000000000000000003461175b565b336001600160a01b0388161480156111645750611164866107e8565b6111a05760405162461bcd60e51b815260206004820152600d60248201526c125b9d985b1a59081a5b9c1d5d609a1b6044820152606401610a17565b60006111ab876122bb565b9050858110156111fd5760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e206465706f7369740000000000006044820152606401610a17565b600061120d89898989898961234e565b90506112198184611b8a565b6112238185611c89565b61122c88611f8a565b61123789878761220b565b60408051868152602081018890526001600160a01b038b16917f73a19dd210f1a7f902193214c0ee91dd35ee5b4d920cba8d519eca65a7b488ca910160405180910390a2505050505050505050565b60006107e260078361235f565b60606004805461074e906143be565b3360009081526001602090815260408083206001600160a01b0386168452909152812054828110156113245760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610a17565b611331338585840361143b565b5060019392505050565b60006107de33848461158b565b61135d6001600160a01b0387163330886117fc565b61136c33878787878787611118565b505050505050565b6113896001600160a01b03891633308a6117fc565b60405163132da19360e21b81523090634cb6864c906113ba908b908b908b908b908b908b908b908b90600401613fd5565b600060405180830381600087803b1580156113d457600080fd5b505af11580156113e8573d6000803e3d6000fd5b505050505050505050505050565b6001600160a01b0381166000908152600960205260408120600181015415801590610a3357505442101592915050565b6000610a33836001600160a01b03841661236b565b6001600160a01b03831661149d5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610a17565b6001600160a01b0382166114fe5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610a17565b6001600160a01b0383811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b6001600160a01b03811660009081526001830160205260408120541515610a33565b60006107e2825490565b6001600160a01b0383166115ef5760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610a17565b6001600160a01b0382166116515760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610a17565b6001600160a01b038316600090815260208190526040902054818110156116c95760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610a17565b6001600160a01b0380851660009081526020819052604080822085850390559185168152908120805484929061170090849061416e565b92505081905550826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161174c91815260200190565b60405180910390a35b50505050565b6000826001600160a01b03168260405160006040518083038185875af1925050503d80600081146117a8576040519150601f19603f3d011682016040523d82523d6000602084013e6117ad565b606091505b50509050806117f75760405162461bcd60e51b815260206004820152601660248201527510d85b1b081dda5d1a081d985b1d594819985a5b195960521b6044820152606401610a17565b505050565b6040516001600160a01b03808516602483015283166044820152606481018290526117559085906323b872dd60e01b906084015b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091526123ba565b600080611873866107e8565b80156118835750611883856107e8565b6118cf5760405162461bcd60e51b815260206004820152601a60248201527f546f6b656e73206e6f742070726573656e7420696e20706f6f6c0000000000006044820152606401610a17565b6118d8866122bb565b91506118e584838561248c565b905094509492505050565b600061191d6040518060800160405280600081526020016000815260200160008152602001600081525090565b6001600160a01b038781166000818152600660208181526040808420548752948a168352908152908390205484820152825163313ce56760e01b8152835160c088901c9467ffffffffffffffff60808a901c81169561ffff60308c901c8116968c811c90911695938c901c90921693909263313ce567926004808301939192829003018186803b1580156119b057600080fd5b505afa1580156119c4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119e89190613f4a565b6119f390601261436f565b6119fe90600a61420b565b866040018181525050896001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b158015611a4057600080fd5b505afa158015611a54573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a789190613f4a565b611a8390601261436f565b611a8e90600a61420b565b60608701526040860151611ae590611aa6908d614339565b604088015188518891611ab891614339565b868a606001518e611ac99190614339565b898c606001518d60200151611ade9190614339565b8989612515565b611b2a5760405162461bcd60e51b8152602060048201526016602482015275125b9d985c9a585b9d0818da1958dac819985a5b195960521b6044820152606401610a17565b505063ffffffff9095169998505050505050505050565b600080611b528888888888886126ca565b9050611b7e7f000000000000000000000000000000000000000000000000000000000000000082612802565b98975050505050505050565b6000600183611b9c6020850185613f2e565b604080516000815260208181018084529490945260ff9092168282015291850135606082015290840135608082015260a0016020604051602081039080840390855afa158015611bf0573d6000803e3d6000fd5b5050506020604051035190507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316816001600160a01b0316146117f75760405162461bcd60e51b815260206004820152602360248201527f4d657373616765207369676e656420627920696e636f7272656374206164647260448201526265737360e81b6064820152608401610a17565b6000828152600a602052604090205460ff1615611ce85760405162461bcd60e51b815260206004820152601e60248201527f4d6573736167652064696765737420616c72656164792070726573656e7400006044820152606401610a17565b42811015611d495760405162461bcd60e51b815260206004820152602860248201527f4d65737361676520726563656976656420616674657220616c6c6f77656420746044820152670696d657374616d760c41b6064820152608401610a17565b506000908152600a60205260409020805460ff19166001179055565b60026005541415611d885760405162461bcd60e51b8152600401610a179061410d565b6002600555611d9684611f8a565b611daa6001600160a01b0384168383612842565b611db383611f8a565b505060016005555050565b6001600160a01b038216611e1e5760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610a17565b6001600160a01b03821660009081526020819052604090205481811015611e925760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610a17565b6001600160a01b0383166000908152602081905260408120838303905560028054849290611ec1908490614358565b90915550506040518281526000906001600160a01b038516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9060200160405180910390a3505050565b6000806000611f196107f5565b90505b80821015611755576000611f2f83611286565b90506402540be400611f56826001600160a01b031660009081526006602052604090205490565b611f609087614339565b611f6a91906141b4565b9350611f7781338661226c565b82611f81816143f3565b93505050611f1c565b6040516370a0823160e01b81523060048201526001600160a01b038216906370a082319060240160206040518083038186803b158015611fc957600080fd5b505afa158015611fdd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906120019190613f16565b6001600160a01b03909116600090815260066020526040902055565b600260055414156120405760405162461bcd60e51b8152600401610a179061410d565b6002600555604051632e1a7d4d60e01b8152600481018290527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690632e1a7d4d90602401600060405180830381600087803b1580156120a757600080fd5b505af11580156120bb573d6000803e3d6000fd5b505050506120e87f0000000000000000000000000000000000000000000000000000000000000000611f8a565b6120f2828261175b565b50506001600555565b6000815b8082101561175557600084848481811061212957634e487b7160e01b600052603260045260246000fd5b90506020020135905060008111156121a857600061214684611286565b90506000612153826122bb565b9050828110156121a55760405162461bcd60e51b815260206004820152601a60248201527f496e73756666696369656e7420746f6b656e206465706f7369740000000000006044820152606401610a17565b50505b826121b2816143f3565b935050506120ff565b600080611b52888888888888612872565b6000806121d96007611581565b90505b80821015612207576121f56121f083611286565b611f8a565b816121ff816143f3565b9250506121dc565b5050565b8161221a576117f783826129a6565b6117f7838383612a85565b6000806122358787878787612bf9565b90506122617f000000000000000000000000000000000000000000000000000000000000000082612802565b979650505050505050565b6002600554141561228f5760405162461bcd60e51b8152600401610a179061410d565b60026005556122a86001600160a01b0384168383612842565b6122b183611f8a565b5050600160055550565b6001600160a01b0381166000818152600660205260408082205490516370a0823160e01b8152306004820152919290916370a082319060240160206040518083038186803b15801561230c57600080fd5b505afa158015612320573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123449190613f16565b6107e29190614358565b600080611b52888888888888612d16565b6000610a338383612e17565b60008181526001830160205260408120546123b2575081546001818101845560008481526020808220909301849055845484825282860190935260409020919091556107e2565b5060006107e2565b600061240f826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b0316612e4f9092919063ffffffff16565b8051909150156117f7578080602001905181019061242d9190613ede565b6117f75760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610a17565b60008383141561249d575080610a33565b6000846124af856402540be400614339565b6124b991906141b4565b90506124ce6402540be4006302faf08061416e565b8110612505576402540be400836124e9826302faf08061416e565b6124f39190614339565b6124fd91906141b4565b915050610a33565b6402540be4006124f38483614339565b60008080806305f5e1006125298c8e614339565b61253391906141b4565b9050600061254a6125448c84614339565b87612e66565b9050801561257c578061256583670de0b6b3a7640000614339565b61256f91906141b4565b612579908561416e565b93505b60006305f5e10061258d8a8c614339565b61259791906141b4565b905060006125ae6125a88a84614339565b89612e66565b905080156125e057806125c983670de0b6b3a7640000614339565b6125d391906141b4565b6125dd908761416e565b95505b5050505060006305f5e1008d8c6125f7919061416e565b612601908e614339565b61260b91906141b4565b9050600061261c6125448c84614339565b9050801561264e578061263783670de0b6b3a7640000614339565b61264191906141b4565b61264b908461416e565b92505b60006305f5e10061265f8c8b614358565b612669908c614339565b61267391906141b4565b905060006126846125a88a84614339565b905080156126b6578061269f83670de0b6b3a7640000614339565b6126a991906141b4565b6126b3908661416e565b94505b50505091109b9a5050505050505050505050565b6000604051602001612789907f4f66666572537472756374286164647265737320696e7075745f746f6b656e2c81527f61646472657373206f75747075745f746f6b656e2c75696e7432353620696e7060208201527f75745f616d6f756e742c75696e74323536206f75747075745f616d6f756e742c60408201527f75696e7432353620676f6f645f756e74696c2c6164647265737320646573746960608201526e6e6174696f6e5f616464726573732960881b6080820152608f0190565b60408051601f198184030181528282528051602091820120908301526001600160a01b03808a169183019190915280881660608301526080820187905260a0820186905260c08201859052831660e0820152610100015b6040516020818303038152906040528051906020012090509695505050505050565b60405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b6040516001600160a01b0383166024820152604481018290526117f790849063a9059cbb60e01b90606401611830565b6000808686604051602001612888929190613f8f565b60405160208183030381529060405280519060200120905060405160200161293a907f4465706f73697453747275637428616464726573732073656e6465722c75696e81527f743235365b5d206465706f7369745f616d6f756e74732c75696e74323536206460208201527f6179735f6c6f636b65642c75696e7432353620706f6f6c5f746f6b656e732c75604082015271696e7432353620676f6f645f756e74696c2960701b606082015260720190565b60408051601f198184030181528282528051602091820120908301526001600160a01b038a1690820152606081018290526080810186905260a0810185905260c0810184905260e001604051602081830303815290604052805190602001209150509695505050505050565b6001600160a01b0382166129fc5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152606401610a17565b8060026000828254612a0e919061416e565b90915550506001600160a01b03821660009081526020819052604081208054839290612a3b90849061416e565b90915550506040518181526001600160a01b038316906000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9060200160405180910390a35050565b60008211612b105760405162461bcd60e51b815260206004820152604c60248201527f436c69707065724469726563743a2043616e6e6f74206372656174652076657360448201527f74696e67206465706f73697420776974686f757420706f73697469766520766560648201526b1cdd1a5b99c81c195c9a5bd960a21b608482015260a401610a17565b6001600160a01b03831660009081526009602052604090206001015415612b985760405162461bcd60e51b815260206004820152603660248201527f436c69707065724469726563743a204465706f7369746f7220616c7265616479604482015275081a185cc8185b881858dd1a5d994819195c1bdcda5d60521b6064820152608401610a17565b600060405180604001604052808462015180612bb49190614339565b612bbe904261416e565b815260209081018490526001600160a01b038616600090815260098252604090208251815590820151600190910155905061175530836129a6565b6000604051602001612caf907f5769746864726177616c537472756374286164647265737320746f6b656e5f6881527f6f6c6465722c75696e7432353620706f6f6c5f746f6b656e5f616d6f756e745f60208201527f746f5f6275726e2c616464726573732061737365745f616464726573732c756960408201527f6e743235362061737365745f616d6f756e742c75696e7432353620676f6f645f606082015265756e74696c2960d01b608082015260860190565b60408051808303601f190181528282528051602091820120818401526001600160a01b039889168383015260608301979097529490961660808701525060a085019190915260c0808501919091528151808503909101815260e09093019052815191012090565b6000604051602001612dbd907f53696e676c654465706f73697453747275637428616464726573732073656e6481527f65722c6164647265737320746f6b656e2c75696e7432353620616d6f756e742c60208201527f75696e7432353620646179735f6c6f636b65642c75696e7432353620706f6f6c60408201527f5f746f6b656e732c75696e7432353620676f6f645f756e74696c2900000000006060820152607b0190565b60408051601f198184030181528282528051602091820120908301526001600160a01b03808a1691830191909152871660608201526080810186905260a0810185905260c0810184905260e08101839052610100016127e0565b6000826000018281548110612e3c57634e487b7160e01b600052603260045260246000fd5b9060005260206000200154905092915050565b6060612e5e8484600085612eb2565b949350505050565b600082612e75575060006107e2565b612eab670de0b6b3a7640000612e92612e8d86612fcf565b61303d565b612e9c90856142b6565b612ea69190614186565b613048565b90506107e2565b606082471015612f135760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b6064820152608401610a17565b843b612f615760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610a17565b600080866001600160a01b03168587604051612f7d9190613fb9565b60006040518083038185875af1925050503d8060008114612fba576040519150601f19603f3d011682016040523d82523d6000602084013e612fbf565b606091505b509150915061226182828661305b565b60006001600160ff1b038211156130395760405162461bcd60e51b815260206004820152602860248201527f53616665436173743a2076616c756520646f65736e27742066697420696e2061604482015267371034b73a191a9b60c11b6064820152608401610a17565b5090565b60006107e282613094565b60006107e261305683613173565b61321e565b6060831561306a575081610a33565b82511561307a5782518084602001fd5b8160405162461bcd60e51b8152600401610a1791906140da565b60008082136130b95760405163309fa7dd60e11b815260048101839052602401610a17565b6000670de0b6b3a764000083126130d2575060016130ec565b6000199050826ec097ce7bc90715b34b9f10000000000492505b6000613101670de0b6b3a76400008505613270565b670de0b6b3a7640000808202945090915084821d9081141561312557505002919050565b6706f05b59d3b200005b600081131561316a57670de0b6b3a7640000828002059150671bc16d674ec800008212613162579384019360019190911d905b60011d61312f565b50505002919050565b6000808212156131d55768033dd1780914b971141982121561319757506000919050565b6131a382600003613173565b6ec097ce7bc90715b34b9f1000000000816131ce57634e487b7160e01b600052601260045260246000fd5b0592915050565b680a688906bd8b00000082126132015760405163e69458f960e01b815260048101839052602401610a17565b670de0b6b3a7640000604083901b04610a3381613354565b919050565b6000808212156130395760405162461bcd60e51b815260206004820181905260248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152606401610a17565b6000600160801b821061329057608091821c9161328d908261416e565b90505b6801000000000000000082106132b357604091821c916132b0908261416e565b90505b64010000000082106132d257602091821c916132cf908261416e565b90505b6201000082106132ef57601091821c916132ec908261416e565b90505b610100821061330b57600891821c91613308908261416e565b90505b6010821061332657600491821c91613323908261416e565b90505b6004821061334157600291821c9161333e908261416e565b90505b60028210613219576107e260018261416e565b600160bf1b6780000000000000008216156133785768016a09e667f3bcc9090260401c5b674000000000000000821615613397576801306fe0a31b7152df0260401c5b6720000000000000008216156133b6576801172b83c7d517adce0260401c5b6710000000000000008216156133d55768010b5586cf9890f62a0260401c5b6708000000000000008216156133f4576801059b0d31585743ae0260401c5b67040000000000000082161561341357680102c9a3e778060ee70260401c5b6702000000000000008216156134325768010163da9fb33356d80260401c5b67010000000000000082161561345157680100b1afa5abcbed610260401c5b668000000000000082161561346f5768010058c86da1c09ea20260401c5b664000000000000082161561348d576801002c605e2e8cec500260401c5b66200000000000008216156134ab57680100162f3904051fa10260401c5b66100000000000008216156134c9576801000b175effdc76ba0260401c5b66080000000000008216156134e757680100058ba01fb9f96d0260401c5b66040000000000008216156135055768010002c5cc37da94920260401c5b6602000000000000821615613523576801000162e525ee05470260401c5b66010000000000008216156135415768010000b17255775c040260401c5b6580000000000082161561355e576801000058b91b5bc9ae0260401c5b6540000000000082161561357b57680100002c5c89d5ec6d0260401c5b652000000000008216156135985768010000162e43f4f8310260401c5b651000000000008216156135b557680100000b1721bcfc9a0260401c5b650800000000008216156135d25768010000058b90cf1e6e0260401c5b650400000000008216156135ef576801000002c5c863b73f0260401c5b6502000000000082161561360c57680100000162e430e5a20260401c5b65010000000000821615613629576801000000b1721835510260401c5b64800000000082161561364557680100000058b90c0b490260401c5b6440000000008216156136615768010000002c5c8601cc0260401c5b64200000000082161561367d576801000000162e42fff00260401c5b6410000000008216156136995768010000000b17217fbb0260401c5b6408000000008216156136b5576801000000058b90bfce0260401c5b6404000000008216156136d157680100000002c5c85fe30260401c5b6402000000008216156136ed5768010000000162e42ff10260401c5b64010000000082161561370957680100000000b17217f80260401c5b63800000008216156137245768010000000058b90bfc0260401c5b634000000082161561373f576801000000002c5c85fe0260401c5b632000000082161561375a57680100000000162e42ff0260401c5b6310000000821615613775576801000000000b17217f0260401c5b630800000082161561379057680100000000058b90c00260401c5b63040000008216156137ab5768010000000002c5c8600260401c5b63020000008216156137c6576801000000000162e4300260401c5b63010000008216156137e15768010000000000b172180260401c5b628000008216156137fb576801000000000058b90c0260401c5b6240000082161561381557680100000000002c5c860260401c5b6220000082161561382f5768010000000000162e430260401c5b6210000082161561384957680100000000000b17210260401c5b620800008216156138635768010000000000058b910260401c5b6204000082161561387d576801000000000002c5c80260401c5b6202000082161561389757680100000000000162e40260401c5b620100008216156138b1576801000000000000b1720260401c5b6180008216156138ca57680100000000000058b90260401c5b6140008216156138e35768010000000000002c5d0260401c5b6120008216156138fc576801000000000000162e0260401c5b6110008216156139155768010000000000000b170260401c5b61080082161561392e576801000000000000058c0260401c5b61040082161561394757680100000000000002c60260401c5b61020082161561396057680100000000000001630260401c5b61010082161561397957680100000000000000b10260401c5b608082161561399157680100000000000000590260401c5b60408216156139a9576801000000000000002c0260401c5b60208216156139c157680100000000000000160260401c5b60108216156139d9576801000000000000000b0260401c5b60088216156139f157680100000000000000060260401c5b6004821615613a0957680100000000000000030260401c5b6002821615613a2157680100000000000000010260401c5b6001821615613a3957680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b80356001600160a01b038116811461321957600080fd5b60008083601f840112613a78578182fd5b50813567ffffffffffffffff811115613a8f578182fd5b6020830191508360208260051b8501011115613aaa57600080fd5b9250929050565b60008083601f840112613ac2578182fd5b50813567ffffffffffffffff811115613ad9578182fd5b602083019150836020828501011115613aaa57600080fd5b600060608284031215613b02578081fd5b50919050565b600060208284031215613b19578081fd5b610a3382613a50565b60008060408385031215613b34578081fd5b613b3d83613a50565b9150613b4b60208401613a50565b90509250929050565b600080600060608486031215613b68578081fd5b613b7184613a50565b9250613b7f60208501613a50565b9150604084013590509250925092565b60008060008060008060008060006101408a8c031215613bad578485fd5b613bb68a613a50565b9850613bc460208b01613a50565b975060408a0135965060608a0135955060808a01359450613be760a08b01613a50565b9350613bf68b60c08c01613af1565b92506101208a013567ffffffffffffffff811115613c12578283fd5b613c1e8c828d01613ab1565b915080935050809150509295985092959850929598565b6000806000806000806000610120888a031215613c50578283fd5b613c5988613a50565b9650613c6760208901613a50565b955060408801359450606088013593506080880135925060a08801359150613c928960c08a01613af1565b905092959891949750929550565b6000806000806000806000610100888a031215613cbb578283fd5b613cc488613a50565b9650602088013567ffffffffffffffff811115613cdf578384fd5b613ceb8a828b01613a67565b909750955050604088013593506060880135925060808801359150613c928960a08a01613af1565b60008060408385031215613d25578182fd5b613d2e83613a50565b946020939093013593505050565b6000806000806000806101008789031215613d55578182fd5b613d5e87613a50565b955060208701359450613d7360408801613a50565b93506060870135925060808701359150613d908860a08901613af1565b90509295509295509295565b600080600080600080600080610120898b031215613db8578182fd5b613dc189613a50565b9750602089013596506040890135955060608901359450613de460808a01613a50565b9350613df38a60a08b01613af1565b925061010089013567ffffffffffffffff811115613e0f578283fd5b613e1b8b828c01613ab1565b999c989b5096995094979396929594505050565b6000806000806000806101008789031215613e48578384fd5b613e5187613a50565b955060208701359450604087013593506060870135925060808701359150613d908860a08901613af1565b60008060008060008060e08789031215613e94578384fd5b863567ffffffffffffffff811115613eaa578485fd5b613eb689828a01613a67565b909750955050602087013593506040870135925060608701359150613d908860808901613af1565b600060208284031215613eef578081fd5b81518015158114610a33578182fd5b600060208284031215613f0f578081fd5b5035919050565b600060208284031215613f27578081fd5b5051919050565b600060208284031215613f3f578081fd5b8135610a338161443a565b600060208284031215613f5b578081fd5b8151610a338161443a565b81835281816020850137506000828201602090810191909152601f909101601f19169091010190565b60006001600160fb1b03831115613fa4578081fd5b8260051b808584379190910190815292915050565b60008251613fcb818460208701614392565b9190910192915050565b6001600160a01b038981168252602082018990526040820188905260608201879052851660808201526000610120853561400e8161443a565b60ff1660a0840152602086013560c0840152604086013560e0840152610100830181905261403f8184018587613f66565b9b9a5050505050505050505050565b606080825284519082018190526000906020906080840190828801845b828110156140875781518452928401929084019060010161406b565b50505083810382850152855180825286830191830190845b818110156140c45783516001600160a01b03168352928401929184019160010161409f565b5050809350505050826040830152949350505050565b60208152600082518060208401526140f9816040850160208701614392565b601f01601f19169190910160400192915050565b6020808252601f908201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604082015260600190565b848152836020820152606060408201526000614164606083018486613f66565b9695505050505050565b600082198211156141815761418161440e565b500190565b60008261419557614195614424565b600160ff1b8214600019841416156141af576141af61440e565b500590565b6000826141c3576141c3614424565b500490565b600181815b808511156142035781600019048211156141e9576141e961440e565b808516156141f657918102915b93841c93908002906141cd565b509250929050565b6000610a3360ff841683600082614224575060016107e2565b81614231575060006107e2565b816001811461424757600281146142515761426d565b60019150506107e2565b60ff8411156142625761426261440e565b50506001821b6107e2565b5060208310610133831016604e8410600b8410161715614290575081810a6107e2565b61429a83836141c8565b80600019048211156142ae576142ae61440e565b029392505050565b60006001600160ff1b03818413828413808216868404861116156142dc576142dc61440e565b600160ff1b848712828116878305891216156142fa576142fa61440e565b8587129250878205871284841616156143155761431561440e565b8785058712818416161561432b5761432b61440e565b505050929093029392505050565b60008160001904831182151516156143535761435361440e565b500290565b60008282101561436a5761436a61440e565b500390565b600060ff821660ff8416808210156143895761438961440e565b90039392505050565b60005b838110156143ad578181015183820152602001614395565b838111156117555750506000910152565b600181811c908216806143d257607f821691505b60208210811415613b0257634e487b7160e01b600052602260045260246000fd5b60006000198214156144075761440761440e565b5060010190565b634e487b7160e01b600052601160045260246000fd5b634e487b7160e01b600052601260045260246000fd5b60ff8116811461444957600080fd5b5056fea264697066735822122074669e91324cdd2e58479ffc85117dad6aab253a4d795b14053f6063232490a664736f6c6343000804003300000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f800000000000000000000000000000000000000000000000000000000000008020000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000000700000000000000000000000000000000000000000000000000000000000008020000000000000000000000001d4c2a246311bb9f827f4c768e277ff5787b7d7e0000000000000000000000008f552a71efe5eefc207bf75485b356a0b3f01ec90000000000000000000000008e70cd5b4ff3f62659049e74b6649c6603a0e59400000000000000000000000030d2a9f5fdf90ace8c17952cbb4ee48a55d916a70000000000000000000000001dc78acda13a8bc4408b207c9e48cdbc096d95e0000000000000000000000000c234a67a4f840e61ade794be47de455361b52413

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f800000000000000000000000000000000000000000000000000000000000008020000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000000700000000000000000000000000000000000000000000000000000000000008020000000000000000000000001d4c2a246311bb9f827f4c768e277ff5787b7d7e0000000000000000000000008f552a71efe5eefc207bf75485b356a0b3f01ec90000000000000000000000008e70cd5b4ff3f62659049e74b6649c6603a0e59400000000000000000000000030d2a9f5fdf90ace8c17952cbb4ee48a55d916a70000000000000000000000001dc78acda13a8bc4408b207c9e48cdbc096d95e0000000000000000000000000c234a67a4f840e61ade794be47de455361b52413

-----Decoded View---------------
Arg [0] : theSigner (address): 0x08938a61ba9523298dbcacee0cda5b371fb7f1f8
Arg [1] : theWrapper (address): 0x0000000000000000000000000000000000000802
Arg [2] : tokens (address[]): 0x0000000000000000000000000000000000000802,0x1d4c2a246311bb9f827f4c768e277ff5787b7d7e,0x8f552a71efe5eefc207bf75485b356a0b3f01ec9,0x8e70cd5b4ff3f62659049e74b6649c6603a0e594,0x30d2a9f5fdf90ace8c17952cbb4ee48a55d916a7,0x1dc78acda13a8bc4408b207c9e48cdbc096d95e0,0xc234a67a4f840e61ade794be47de455361b52413

-----Encoded View---------------
11 Constructor Arguments found :
Arg [0] : 00000000000000000000000008938a61ba9523298dbcacee0cda5b371fb7f1f8
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000802
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000007
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000802
Arg [5] : 0000000000000000000000001d4c2a246311bb9f827f4c768e277ff5787b7d7e
Arg [6] : 0000000000000000000000008f552a71efe5eefc207bf75485b356a0b3f01ec9
Arg [7] : 0000000000000000000000008e70cd5b4ff3f62659049e74b6649c6603a0e594
Arg [8] : 00000000000000000000000030d2a9f5fdf90ace8c17952cbb4ee48a55d916a7
Arg [9] : 0000000000000000000000001dc78acda13a8bc4408b207c9e48cdbc096d95e0
Arg [10] : 000000000000000000000000c234a67a4f840e61ade794be47de455361b52413


Block Transaction Gas Used Reward
Age Block Fee Address BC Fee Address Voting Power Jailed Incoming
Block Uncle Number Difficulty Gas Used Reward
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.