Overview
GLMR Balance
0 GLMR
GLMR Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 724 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Swap Exact Yt Fo... | 8580376 | 7 hrs ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8580373 | 7 hrs ago | IN | 0 GLMR | 0.268618 | ||||
Swap Exact Yt Fo... | 8572565 | 20 hrs ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8572562 | 20 hrs ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8566662 | 30 hrs ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8566660 | 30 hrs ago | IN | 0 GLMR | 0.268618 | ||||
Swap Exact Yt Fo... | 8557771 | 45 hrs ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8557768 | 45 hrs ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8552194 | 2 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8552191 | 2 days ago | IN | 0 GLMR | 0.268618 | ||||
Swap Exact Yt Fo... | 8544319 | 2 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8544316 | 2 days ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8538178 | 3 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8538175 | 3 days ago | IN | 0 GLMR | 0.268618 | ||||
Swap Exact Yt Fo... | 8531942 | 3 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8531939 | 3 days ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8523897 | 4 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8523894 | 4 days ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8521099 | 4 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8521096 | 4 days ago | IN | 0 GLMR | 0.268618 | ||||
Swap Exact Yt Fo... | 8509480 | 5 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8509476 | 5 days ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8501490 | 5 days ago | IN | 0 GLMR | 0.268772 | ||||
Swap Exact Yt Fo... | 8501487 | 5 days ago | IN | 0 GLMR | 0.267712 | ||||
Swap Exact Yt Fo... | 8495234 | 6 days ago | IN | 0 GLMR | 0.268772 |
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
7607512 | 68 days ago | 1.8858294 GLMR |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
ZenlinkRouterV3
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 800 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {Proxy} from "@openzeppelin/contracts/proxy/Proxy.sol"; import {Errors} from "../core/libraries/Errors.sol"; import {IPAllActionV3} from "../interfaces/IPAllActionV3.sol"; import {IDiamondLoupe} from "../interfaces/IDiamondLoupe.sol"; import {IDiamondCut} from "../interfaces/IDiamondCut.sol"; contract ZenlinkRouterV3 is Proxy, IDiamondLoupe { address internal immutable ACTION_ADD_REMOVE_LIQ; address internal immutable ACTION_SWAP_PT; address internal immutable ACTION_SWAP_YT; address internal immutable ACTION_MISC; address internal immutable ACTION_CALLBACK; event DiamondCut(IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata); constructor( address _ACTION_ADD_REMOVE_LIQ, address _ACTION_SWAP_PT, address _ACTION_SWAP_YT, address _ACTION_MISC, address _ACTION_CALLBACK ) { ACTION_ADD_REMOVE_LIQ = _ACTION_ADD_REMOVE_LIQ; ACTION_SWAP_PT = _ACTION_SWAP_PT; ACTION_SWAP_YT = _ACTION_SWAP_YT; ACTION_MISC = _ACTION_MISC; ACTION_CALLBACK = _ACTION_CALLBACK; _emitEvents(); } function _emitEvents() internal { Facet[] memory facets_ = facets(); uint256 nFacets = facets_.length; IDiamondCut.FacetCut[] memory cuts = new IDiamondCut.FacetCut[](nFacets); for (uint256 i; i < nFacets;) { cuts[i].facetAddress = facets_[i].facetAddress; cuts[i].action = IDiamondCut.FacetCutAction.Add; cuts[i].functionSelectors = facets_[i].functionSelectors; unchecked { ++i; } } emit DiamondCut(cuts, address(0), ""); } receive() external payable virtual override {} /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() public view returns (Facet[] memory facets_) { address[] memory facetAddresses_ = facetAddresses(); uint256 numFacets = facetAddresses_.length; facets_ = new Facet[](numFacets); for (uint256 i; i < numFacets;) { facets_[i].facetAddress = facetAddresses_[i]; facets_[i].functionSelectors = facetFunctionSelectors(facetAddresses_[i]); unchecked { i++; } } } function facetFunctionSelectors(address facet) public view returns (bytes4[] memory res) { if (facet == address(this)) { res = new bytes4[](4); res[0] = 0x52ef6b2c; // facetAddresses res[1] = 0x7a0ed627; // facets res[2] = 0xadfca15e; // facetFunctionSelectors res[3] = 0xcdffacc6; // facetAddress } if (facet == ACTION_ADD_REMOVE_LIQ) { res = new bytes4[](12); res[0] = 0xfa240cf3; // addLiquiditySingleToken res[1] = 0xfed2a781; // addLiquidityDualTokenAndPt res[2] = 0x379ba52c; // addLiquiditySingleTokenKeepYt res[3] = 0x4e390267; // addLiquiditySinglePt res[4] = 0x58bda475; // addLiquiditySingleSy res[5] = 0x3db7c449; // removeLiquiditySingleToken res[6] = 0x6b77ac9e; // removeLiquiditySinglePt res[7] = 0x844384aa; // addLiquiditySingleSyKeepYt res[8] = 0x97ee279e; // addLiquidityDualSyAndPt res[9] = 0x3e38dbd0; // removeLiquidityDualTokenAndPt res[10] = 0xb7d75b8b; // removeLiquidityDualSyAndPt res[11] = 0xd13b4fdc; // removeLiquiditySingleSy } if (facet == ACTION_SWAP_YT) { res = new bytes4[](6); res[0] = 0x3a57f1fa; // swapExactYtForToken res[1] = 0x448b9b95; // swapExactYtForPt res[2] = 0x7b8b4b95; // swapExactSyForYt res[3] = 0x80c4d566; // swapExactYtForSy res[4] = 0xc861a898; // swapExactPtForYt res[5] = 0xd05ce796; // swapExactTokenForYt } if (facet == ACTION_SWAP_PT) { res = new bytes4[](4); res[0] = 0x2a50917c; // swapExactSyForPt res[1] = 0x3346d3a3; // swapExactPtForSy res[2] = 0x11531c4f; // swapExactPtForToken res[3] = 0x52fff22f; // swapExactTokenForPt } if (facet == ACTION_CALLBACK) { res = new bytes4[](2); res[0] = 0xeb3a7d47; // limitRouterCallback res[1] = 0xfa483e72; // swapCallback } if (facet == ACTION_MISC) { res = new bytes4[](12); res[0] = 0x1a8631b2; // mintPyFromSy res[1] = 0x2d8f9d8d; // boostMarkets res[2] = 0x4e13f363; // mintSyFromToken res[3] = 0x339748cb; // redeemPyToSy res[4] = 0x012e638b; // redeemSyToToken res[5] = 0xf08fa004; // redeemPyToToken res[6] = 0xab4a716c; // swapTokenToToken res[7] = 0x60fc8466; // multicall res[8] = 0x4e1d95fc; // swapTokenToTokenViaSy res[9] = 0xbd61951d; // simulate res[10] = 0xdfd702a5; // mintPyFromToken res[11] = 0xf7e375e8; // redeemDueInterestAndRewards } } function facetAddress(bytes4 sig) public view returns (address) { if (sig < 0x7a0ed627) { if (sig < 0x3e38dbd0) { if (sig < 0x3346d3a3) { if (sig < 0x1a8631b2) { if (sig == 0x012e638b) return ACTION_MISC; //redeemSyToToken if (sig == 0x11531c4f) return ACTION_SWAP_PT; //swapExactPtForToken } else { if (sig == 0x1a8631b2) return ACTION_MISC; //mintPyFromSy if (sig == 0x2a50917c) return ACTION_SWAP_PT; //swapExactSyForPt if (sig == 0x2d8f9d8d) return ACTION_MISC; //boostMarkets } } else { if (sig < 0x379ba52c) { if (sig == 0x3346d3a3) return ACTION_SWAP_PT; //swapExactPtForSy if (sig == 0x339748cb) return ACTION_MISC; //redeemPyToSy } else { if (sig == 0x379ba52c) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleTokenKeepYt if (sig == 0x3a57f1fa) return ACTION_SWAP_YT; //swapExactYtForToken if (sig == 0x3db7c449) return ACTION_ADD_REMOVE_LIQ; //removeLiquiditySingleToken } } } else { if (sig < 0x52ef6b2c) { if (sig < 0x4e13f363) { if (sig == 0x3e38dbd0) return ACTION_ADD_REMOVE_LIQ; //removeLiquidityDualTokenAndPt if (sig == 0x448b9b95) return ACTION_SWAP_YT; //swapExactYtForPt } else { if (sig == 0x4e13f363) return ACTION_MISC; //mintSyFromToken if (sig == 0x4e1d95fc) return ACTION_MISC; //swapTokenToTokenViaSy if (sig == 0x4e390267) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySinglePt } } else { if (sig < 0x58bda475) { if (sig == 0x52ef6b2c) return address(this); //facetAddresses if (sig == 0x52fff22f) return ACTION_SWAP_PT; //swapExactTokenForPt } else { if (sig == 0x58bda475) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleSy if (sig == 0x60fc8466) return ACTION_MISC; //multicall if (sig == 0x6b77ac9e) return ACTION_ADD_REMOVE_LIQ; //removeLiquiditySinglePt } } } } else { if (sig < 0xcdffacc6) { if (sig < 0xab4a716c) { if (sig < 0x80c4d566) { if (sig == 0x7a0ed627) return address(this); //facets if (sig == 0x7b8b4b95) return ACTION_SWAP_YT; //swapExactSyForYt } else { if (sig == 0x80c4d566) return ACTION_SWAP_YT; //swapExactYtForSy if (sig == 0x844384aa) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleSyKeepYt if (sig == 0x97ee279e) return ACTION_ADD_REMOVE_LIQ; //addLiquidityDualSyAndPt } } else { if (sig < 0xb7d75b8b) { if (sig == 0xab4a716c) return ACTION_MISC; //swapTokenToToken if (sig == 0xadfca15e) return address(this); //facetFunctionSelectors } else { if (sig == 0xb7d75b8b) return ACTION_ADD_REMOVE_LIQ; //removeLiquidityDualSyAndPt if (sig == 0xbd61951d) return ACTION_MISC; //simulate if (sig == 0xc861a898) return ACTION_SWAP_YT; //swapExactPtForYt } } } else { if (sig < 0xf08fa004) { if (sig < 0xd13b4fdc) { if (sig == 0xcdffacc6) return address(this); //facetAddress if (sig == 0xd05ce796) return ACTION_SWAP_YT; //swapExactTokenForYt } else { if (sig == 0xd13b4fdc) return ACTION_ADD_REMOVE_LIQ; //removeLiquiditySingleSy if (sig == 0xdfd702a5) return ACTION_MISC; //mintPyFromToken if (sig == 0xeb3a7d47) return ACTION_CALLBACK; //limitRouterCallback } } else { if (sig < 0xfa240cf3) { if (sig == 0xf08fa004) return ACTION_MISC; //redeemPyToToken if (sig == 0xf7e375e8) return ACTION_MISC; //redeemDueInterestAndRewards } else { if (sig == 0xfa240cf3) return ACTION_ADD_REMOVE_LIQ; //addLiquiditySingleToken if (sig == 0xfa483e72) return ACTION_CALLBACK; //swapCallback if (sig == 0xfed2a781) return ACTION_ADD_REMOVE_LIQ; //addLiquidityDualTokenAndPt } } } } revert Errors.RouterInvalidAction(sig); // NUM_FUNC: 40 AVG:4.80 WORST_CASE:6 STOP_BRANCH:3 } function facetAddresses() public view returns (address[] memory) { address[] memory res = new address[](6); res[0] = address(this); res[1] = ACTION_ADD_REMOVE_LIQ; res[2] = ACTION_SWAP_YT; res[3] = ACTION_SWAP_PT; res[4] = ACTION_CALLBACK; res[5] = ACTION_MISC; return res; } function _implementation() internal view override returns (address) { return facetAddress(msg.sig); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overridden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; library Errors { // BulkSeller error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error BulkNotMaintainer(); error BulkNotAdmin(); error BulkSellerAlreadyExisted(address token, address SY, address bulk); error BulkSellerInvalidToken(address token, address SY); error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps); error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps); // APPROX error ApproxFail(); error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps); error ApproxBinarySearchInputInvalid( uint256 approxGuessMin, uint256 approxGuessMax, uint256 minGuessMin, uint256 maxGuessMax ); // MARKET + MARKET MATH CORE error MarketExpired(); error MarketZeroAmountsInput(); error MarketZeroAmountsOutput(); error MarketZeroLnImpliedRate(); error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount); error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance); error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset); error MarketExchangeRateBelowOne(int256 exchangeRate); error MarketProportionMustNotEqualOne(); error MarketRateScalarBelowZero(int256 rateScalar); error MarketScalarRootBelowZero(int256 scalarRoot); error MarketProportionTooHigh(int256 proportion, int256 maxProportion); error OracleUninitialized(); error OracleTargetTooOld(uint32 target, uint32 oldest); error OracleZeroCardinality(); error MarketFactoryExpiredPt(); error MarketFactoryInvalidPt(); error MarketFactoryMarketExists(); error MarketFactoryGaugeControllerExists(); error MarketFactoryGaugeControllerNotSet(); error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot); error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot); error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent); error MarketFactoryZeroTreasury(); error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor); error MFNotZenlinkMarket(address addr); // ROUTER error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut); error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut); error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut); error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut); error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay); error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay); error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed); error RouterTimeRangeZero(); error RouterCallbackNotZenlinkMarket(address caller); error RouterInvalidAction(bytes4 selector); error RouterInvalidFacet(address facet); error RouterKyberSwapDataZero(); error SimulationResults(bool success, bytes res); // YIELD CONTRACT error YCExpired(); error YCNotExpired(); error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy); error YCNothingToRedeem(); error YCPostExpiryDataNotSet(); error YCNoFloatingSy(); // YieldFactory error YCFactoryInvalidExpiry(); error YCFactoryYieldContractExisted(); error YCFactoryZeroExpiryDivisor(); error YCFactoryZeroTreasury(); error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate); error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate); // SY error SYInvalidTokenIn(address token); error SYInvalidTokenOut(address token); error SYZeroDeposit(); error SYZeroRedeem(); error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut); error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); // SY-specific error SYQiTokenMintFailed(uint256 errCode); error SYQiTokenRedeemFailed(uint256 errCode); error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1); error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax); error SYCurveInvalidPid(); error SYCurve3crvPoolNotFound(); error SYApeDepositAmountTooSmall(uint256 amountDeposited); error SYBalancerInvalidPid(); error SYInvalidRewardToken(address token); error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable); error SYBalancerReentrancy(); error NotFromTrustedRemote(uint16 srcChainId, bytes path); error ApxETHNotEnoughBuffer(); // Liquidity Mining error VCInactivePool(address pool); error VCPoolAlreadyActive(address pool); error VCZeroVeZenlink(address user); error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight); error VCEpochNotFinalized(uint256 wTime); error VCPoolAlreadyAddAndRemoved(address pool); error VEInvalidNewExpiry(uint256 newExpiry); error VEExceededMaxLockTime(); error VEInsufficientLockTime(); error VENotAllowedReduceExpiry(); error VEZeroAmountLocked(); error VEPositionNotExpired(); error VEZeroPosition(); error VEZeroSlope(uint128 bias, uint128 slope); error VEReceiveOldSupply(uint256 msgTime); error GCNotZenlinkMarket(address caller); error GCNotVotingController(address caller); error InvalidWTime(uint256 wTime); error ExpiryInThePast(uint256 expiry); error ChainNotSupported(uint256 chainId); error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount); error FDEpochLengthMismatch(); error FDInvalidPool(address pool); error FDPoolAlreadyExists(address pool); error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch); error FDInvalidStartEpoch(uint256 startEpoch); error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime); error FDFutureFunding(uint256 lastFunded, uint256 currentWTime); error BDInvalidEpoch(uint256 epoch, uint256 startTime); // Cross-Chain error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path); error MsgNotFromReceiveEndpoint(address sender); error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee); error ApproxDstExecutionGasNotSet(); error InvalidRetryData(); // GENERIC MSG error ArrayLengthMismatch(); error ArrayEmpty(); error ArrayOutOfBounds(); error ZeroAddress(); error FailedToSendEther(); error InvalidMerkleProof(); error OnlyLayerZeroEndpoint(); error OnlyYT(); error OnlyYCFactory(); error OnlyWhitelisted(); // Swap Aggregator error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual); error UnsupportedSelector(uint256 aggregatorType, bytes4 selector); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IPActionAddRemoveLiqV3} from "./IPActionAddRemoveLiqV3.sol"; import {IPActionSwapPTV3} from "./IPActionSwapPTV3.sol"; import {IPActionSwapYTV3} from "./IPActionSwapYTV3.sol"; import {IPActionMiscV3} from "./IPActionMiscV3.sol"; import {IPActionCallbackV3} from "./IPActionCallbackV3.sol"; import {IDiamondLoupe} from "./IDiamondLoupe.sol"; interface IPAllActionV3 is IPActionAddRemoveLiqV3, IPActionSwapPTV3, IPActionSwapYTV3, IPActionMiscV3, IPActionCallbackV3, IDiamondLoupe {}
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; // A loupe is a small magnifying glass used to look at diamonds. // These functions look at diamonds interface IDiamondLoupe { /// These functions are expected to be called frequently /// by tools. struct Facet { address facetAddress; bytes4[] functionSelectors; } /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() external view returns (Facet[] memory facets_); /// @notice Gets all the function selectors supported by a specific facet. /// @param _facet The facet address. /// @return facetFunctionSelectors_ function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_); /// @notice Get all the facet addresses used by a diamond. /// @return facetAddresses_ function facetAddresses() external view returns (address[] memory facetAddresses_); /// @notice Gets the facet that supports the given selector. /// @dev If facet is not found return address(0). /// @param _functionSelector The function selector. /// @return facetAddress_ The facet address. function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {ApproxParams} from "../router/base/MarketApproxLib.sol"; import {TokenInput, TokenOutput, LimitOrderData} from "./IPAllActionTypeV3.sol"; interface IPActionAddRemoveLiqV3 { event AddLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyUsed, uint256 netPtUsed, uint256 netLpOut ); event AddLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenIn, address receiver, uint256 netTokenUsed, uint256 netPtUsed, uint256 netLpOut, uint256 netSyInterm ); event AddLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netPtIn, uint256 netLpOut ); event AddLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netLpOut ); event AddLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netSyInterm ); event AddLiquiditySingleSyKeepYt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netSyMintPy, uint256 netLpOut, uint256 netYtOut ); event AddLiquiditySingleTokenKeepYt( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm ); event RemoveLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netSyOut ); event RemoveLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenOut, address receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netTokenOut, uint256 netSyInterm ); event RemoveLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut ); event RemoveLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netSyOut ); event RemoveLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netLpToRemove, uint256 netTokenOut, uint256 netSyInterm ); function addLiquidityDualTokenAndPt( address receiver, address market, TokenInput calldata input, uint256 netPtDesired, uint256 minLpOut ) external payable returns (uint256 netLpOut, uint256 netPtUsed, uint256 netSyInterm); function addLiquidityDualSyAndPt( address receiver, address market, uint256 netSyDesired, uint256 netPtDesired, uint256 minLpOut ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function addLiquiditySinglePt( address receiver, address market, uint256 netPtIn, uint256 minLpOut, ApproxParams calldata guessPtSwapToSy, LimitOrderData calldata limit ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleToken( address receiver, address market, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netLpOut, uint256 netSyFee, uint256 netSyInterm); function addLiquiditySingleSy( address receiver, address market, uint256 netSyIn, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, LimitOrderData calldata limit ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleTokenKeepYt( address receiver, address market, uint256 minLpOut, uint256 minYtOut, TokenInput calldata input ) external payable returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm); function addLiquiditySingleSyKeepYt( address receiver, address market, uint256 netSyIn, uint256 minLpOut, uint256 minYtOut ) external returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy); function removeLiquidityDualTokenAndPt( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, uint256 minPtOut ) external returns (uint256 netTokenOut, uint256 netPtOut, uint256 netSyInterm); function removeLiquidityDualSyAndPt( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, uint256 minPtOut ) external returns (uint256 netSyOut, uint256 netPtOut); function removeLiquiditySinglePt( address receiver, address market, uint256 netLpToRemove, uint256 minPtOut, ApproxParams calldata guessPtReceivedFromSy, LimitOrderData calldata limit ) external returns (uint256 netPtOut, uint256 netSyFee); function removeLiquiditySingleToken( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function removeLiquiditySingleSy( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {ApproxParams} from "../router/base/MarketApproxLib.sol"; import {TokenInput, TokenOutput, LimitOrderData} from "./IPAllActionTypeV3.sol"; interface IPActionSwapPTV3 { event SwapPtAndSy( address indexed caller, address indexed market, address indexed receiver, int256 netPtToAccount, int256 netSyToAccount ); event SwapPtAndToken( address indexed caller, address indexed market, address indexed token, address receiver, int256 netPtToAccount, int256 netTokenToAccount, uint256 netSyInterm ); function swapExactTokenForPt( address receiver, address market, uint256 minPtOut, ApproxParams calldata guessPtOut, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netPtOut, uint256 netSyFee, uint256 netSyInterm); function swapExactSyForPt( address receiver, address market, uint256 exactSyIn, uint256 minPtOut, ApproxParams calldata guessPtOut, LimitOrderData calldata limit ) external returns (uint256 netPtOut, uint256 netSyFee); function swapExactPtForToken( address receiver, address market, uint256 exactPtIn, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function swapExactPtForSy( address receiver, address market, uint256 exactPtIn, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {ApproxParams} from "../router/base/MarketApproxLib.sol"; import {TokenInput, TokenOutput, LimitOrderData} from "./IPAllActionTypeV3.sol"; interface IPActionSwapYTV3 { event SwapYtAndSy( address indexed caller, address indexed market, address indexed receiver, int256 netYtToAccount, int256 netSyToAccount ); event SwapYtAndToken( address indexed caller, address indexed market, address indexed token, address receiver, int256 netYtToAccount, int256 netTokenToAccount, uint256 netSyInterm ); event SwapPtAndYt( address indexed caller, address indexed market, address indexed receiver, int256 netPtToAccount, int256 netYtToAccount ); function swapExactTokenForYt( address receiver, address market, uint256 minYtOut, ApproxParams calldata guessYtOut, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netYtOut, uint256 netSyFee, uint256 netSyInterm); function swapExactSyForYt( address receiver, address market, uint256 exactSyIn, uint256 minYtOut, ApproxParams calldata guessYtOut, LimitOrderData calldata limit ) external returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForToken( address receiver, address market, uint256 exactYtIn, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function swapExactYtForSy( address receiver, address market, uint256 exactYtIn, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); function swapExactPtForYt( address receiver, address market, uint256 exactPtIn, uint256 minYtOut, ApproxParams calldata guessTotalPtToSwap ) external returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForPt( address receiver, address market, uint256 exactYtIn, uint256 minPtOut, ApproxParams calldata guessTotalPtFromSwap ) external returns (uint256 netPtOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {ApproxParams} from "../router/base/MarketApproxLib.sol"; import {TokenInput, TokenOutput, LimitOrderData} from "./IPAllActionTypeV3.sol"; interface IPActionMiscV3 { struct Call3 { bool allowFailure; bytes callData; } struct Result { bool success; bytes returnData; } event MintSyFromToken( address indexed caller, address indexed tokenIn, address indexed SY, address receiver, uint256 netTokenIn, uint256 netSyOut ); event RedeemSyToToken( address indexed caller, address indexed tokenOut, address indexed SY, address receiver, uint256 netSyIn, uint256 netTokenOut ); event MintPyFromSy( address indexed caller, address indexed receiver, address indexed YT, uint256 netSyIn, uint256 netPyOut ); event RedeemPyToSy( address indexed caller, address indexed receiver, address indexed YT, uint256 netPyIn, uint256 netSyOut ); event MintPyFromToken( address indexed caller, address indexed tokenIn, address indexed YT, address receiver, uint256 netTokenIn, uint256 netPyOut, uint256 netSyInterm ); event RedeemPyToToken( address indexed caller, address indexed tokenOut, address indexed YT, address receiver, uint256 netPyIn, uint256 netTokenOut, uint256 netSyInterm ); function mintSyFromToken(address receiver, address SY, uint256 minSyOut, TokenInput calldata input) external payable returns (uint256 netSyOut); function redeemSyToToken(address receiver, address SY, uint256 netSyIn, TokenOutput calldata output) external returns (uint256 netTokenOut); function mintPyFromToken(address receiver, address YT, uint256 minPyOut, TokenInput calldata input) external payable returns (uint256 netPyOut, uint256 netSyInterm); function redeemPyToToken(address receiver, address YT, uint256 netPyIn, TokenOutput calldata output) external returns (uint256 netTokenOut, uint256 netSyInterm); function mintPyFromSy(address receiver, address YT, uint256 netSyIn, uint256 minPyOut) external returns (uint256 netPyOut); function redeemPyToSy(address receiver, address YT, uint256 netPyIn, uint256 minSyOut) external returns (uint256 netSyOut); function redeemDueInterestAndRewards( address user, address[] calldata sys, address[] calldata yts, address[] calldata markets ) external; function swapTokenToToken(address receiver, uint256 minTokenOut, TokenInput calldata inp) external payable returns (uint256 netTokenOut); function swapTokenToTokenViaSy( address receiver, address SY, TokenInput calldata input, address tokenRedeemSy, uint256 minTokenOut ) external payable returns (uint256 netTokenOut, uint256 netSyInterm); function boostMarkets(address[] memory markets) external; function multicall(Call3[] calldata calls) external payable returns (Result[] memory res); function simulate(address target, bytes calldata data) external payable; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IPMarketSwapCallback} from "./IPMarketSwapCallback.sol"; import {IPLimitRouterCallback} from "./IPLimitRouter.sol"; interface IPActionCallbackV3 is IPMarketSwapCallback, IPLimitRouterCallback {}
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {PMath} from "../../core/libraries/math/PMath.sol"; import {MarketMathCore, MarketState, MarketPreCompute} from "../../core/Market/MarketMathCore.sol"; import {PYIndex, PYIndexLib} from "../../core/StandardizedYield/PYIndex.sol"; import {LogExpMath} from "../../core/libraries/math/LogExpMath.sol"; import {Errors} from "../../core/libraries/Errors.sol"; struct ApproxParams { uint256 guessMin; uint256 guessMax; uint256 guessOffchain; // pass 0 in to skip this variable uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2 uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set // to 1e15 (1e18/1000 = 0.1%) } /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out, /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula /// To approx, the 5 values above will have to be provided, and the approx process will run as follows: /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out /// netSyNeed = calcSwapSyForExactPt(mid) /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn /// else guessMin = mid (1) /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases /// except in cases that there is a trade in the same market right before the tx library MarketApproxPtInLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using PMath for uint256; using PMath for int256; using LogExpMath for int256; /** * @dev algorithm: * - Bin search the amount of PT to swap in * - Try swapping & get netSyOut * - Stop when netSyOut greater & approx minSyOut * - guess & approx is for netPtIn */ function approxSwapPtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/ ) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee,) = calcSyOut(market, comp, index, guess); if (netSyOut >= minSyOut) { if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) { return (guess, netSyOut, netSyFee); } approx.guessMax = guess; } else { approx.guessMin = guess; } } revert Errors.ApproxFail(); } /** * @dev algorithm: * - Bin search the amount of PT to swap in * - Flashswap the corresponding amount of SY out * - Pair those amount with exactSyIn SY to tokenize into PT & YT * - PT to repay the flashswap, YT transferred to user * - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn * - guess & approx is for netYtOut (also netPtIn) */ function approxSwapExactSyForYt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtOut*/ uint256 /*netSyFee*/ ) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, index.syToAsset(exactSyIn)); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee,) = calcSyOut(market, comp, index, guess); uint256 netSyToTokenizePt = index.assetToSyUp(guess); // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY uint256 netSyToPull = netSyToTokenizePt - netSyOut; if (netSyToPull <= exactSyIn) { if (PMath.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) { return (guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } struct Args5 { MarketState market; PYIndex index; uint256 totalPtIn; uint256 netSyHolding; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: * - Bin search the amount of PT to swap to SY * - Swap PT to SY * - Pair the remaining PT with the SY to add liquidity * - Stop when the ratio of PT / totalPt & SY / totalSy is approx * - guess & approx is for netPtSwap */ function approxSwapPtToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalPtIn, uint256 _netSyHolding, uint256 _blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtSwap*/ uint256, /*netSyFromSwap*/ uint256 /*netSyFee*/ ) { Args5 memory a = Args5(_market, _index, _totalPtIn, _netSyHolding, _blockTime, approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(a.market, comp)); approx.guessMax = PMath.min(approx.guessMax, a.totalPtIn); validateApprox(approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee,) = calcNumerators(a.market, a.index, a.totalPtIn, a.netSyHolding, comp, guess); if (PMath.isAApproxB(syNumerator, ptNumerator, approx.eps)) { return (guess, netSyOut, netSyFee); } if (syNumerator <= ptNumerator) { // needs more SY --> swap more PT approx.guessMin = guess + 1; } else { // needs less SY --> swap less PT approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } function calcNumerators( MarketState memory market, PYIndex index, uint256 totalPtIn, uint256 netSyHolding, MarketPreCompute memory comp, uint256 guess ) internal pure returns (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess); uint256 newTotalPt = uint256(market.totalPt) + guess; uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve); // it is desired that // (netSyOut + netSyHolding) / newTotalSy = netPtRemaining / newTotalPt // which is equivalent to // (netSyOut + netSyHolding) * newTotalPt = netPtRemaining * newTotalSy syNumerator = (netSyOut + netSyHolding) * newTotalPt; ptNumerator = (totalPtIn - guess) * newTotalSy; } /** * @dev algorithm: * - Bin search the amount of PT to swap to SY * - Flashswap the corresponding amount of SY out * - Tokenize all the SY into PT + YT * - PT to repay the flashswap, YT transferred to user * - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn * - guess & approx is for totalPtToSwap */ function approxSwapExactPtForYt( MarketState memory market, PYIndex index, uint256 exactPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtOut*/ uint256, /*totalPtToSwap*/ uint256 /*netSyFee*/ ) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, exactPtIn); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee,) = calcSyOut(market, comp, index, guess); uint256 netAssetOut = index.syToAsset(netSyOut); // guess >= netAssetOut since we are swapping PT to SY uint256 netPtToPull = guess - netAssetOut; if (netPtToPull <= exactPtIn) { if (PMath.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) { return (netAssetOut, guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyOut(MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtIn) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, -int256(netPtIn)); netSyOut = uint256(_netSyOut); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY /// function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) { revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } } function calcMaxPtIn(MarketState memory market, MarketPreCompute memory comp) internal pure returns (uint256) { uint256 low = 0; uint256 hi = uint256(comp.totalAsset) - 1; while (low != hi) { uint256 mid = (low + hi + 1) / 2; if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1; else low = mid; } return low; } function calcSlope(MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket) internal pure returns (int256) { int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket; int256 sumPt = ptToMarket + totalPt; require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket"); int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(sumPt * diffAssetPtToMarket); int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln(); int256 part3 = PMath.IONE.divDown(comp.rateScalar); return comp.rateAnchor - (part1 - part2).mulDown(part3); } } library MarketApproxPtOutLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using PMath for uint256; using PMath for int256; using LogExpMath for int256; /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Calculate the amount of SY needed * - Stop when the netSyIn is smaller approx exactSyIn * - guess & approx is for netSyIn */ function approxSwapExactSyForPt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtOut*/ uint256 /*netSyFee*/ ) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyIn, uint256 netSyFee,) = calcSyIn(market, comp, index, guess); if (netSyIn <= exactSyIn) { if (PMath.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) { return (guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Flashswap that amount of PT & pair with YT to redeem SY * - Use the SY to repay the flashswap debt and the remaining is transferred to user * - Stop when the netSyOut is greater approx the minSyOut * - guess & approx is for netSyOut */ function approxSwapYtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/ ) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee,) = calcSyIn(market, comp, index, guess); uint256 netAssetToRepay = index.syToAssetUp(netSyOwed); uint256 netSyOut = index.assetToSy(guess - netAssetToRepay); if (netSyOut >= minSyOut) { if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) { return (guess, netSyOut, netSyFee); } approx.guessMax = guess; } else { approx.guessMin = guess + 1; } } revert Errors.ApproxFail(); } struct Args6 { MarketState market; PYIndex index; uint256 totalSyIn; uint256 netPtHolding; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Swap that amount of PT out * - Pair the remaining PT with the SY to add liquidity * - Stop when the ratio of PT / totalPt & SY / totalSy is approx * - guess & approx is for netPtFromSwap */ function approxSwapSyToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalSyIn, uint256 _netPtHolding, uint256 _blockTime, ApproxParams memory _approx ) internal pure returns (uint256, /*netPtFromSwap*/ uint256, /*netSySwap*/ uint256 /*netSyFee*/ ) { Args6 memory a = Args6(_market, _index, _totalSyIn, _netPtHolding, _blockTime, _approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (a.approx.guessOffchain == 0) { // no limit on min a.approx.guessMax = PMath.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt)); validateApprox(a.approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) { uint256 guess = nextGuess(a.approx, iter); (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(a.market, comp, a.index, guess); if (netSyIn > a.totalSyIn) { a.approx.guessMax = guess - 1; continue; } uint256 syNumerator; uint256 ptNumerator; { uint256 newTotalPt = uint256(a.market.totalPt) - guess; uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve; // it is desired that // (netPtFromSwap + netPtHolding) / newTotalPt = netSyRemaining / netTotalSy // which is equivalent to // (netPtFromSwap + netPtHolding) * netTotalSy = netSyRemaining * newTotalPt ptNumerator = (guess + a.netPtHolding) * netTotalSy; syNumerator = (a.totalSyIn - netSyIn) * newTotalPt; } if (PMath.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) { return (guess, netSyIn, netSyFee); } if (ptNumerator <= syNumerator) { // needs more PT a.approx.guessMin = guess + 1; } else { // needs less PT a.approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Flashswap that amount of PT out * - Pair all the PT with the YT to redeem SY * - Use the SY to repay the flashswap debt * - Stop when the amount of YT required to pair with PT is approx exactYtIn * - guess & approx is for netPtFromSwap */ function approxSwapExactYtForPt( MarketState memory market, PYIndex index, uint256 exactYtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtOut*/ uint256, /*totalPtSwapped*/ uint256 /*netSyFee*/ ) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, exactYtIn); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee,) = calcSyIn(market, comp, index, guess); uint256 netYtToPull = index.syToAssetUp(netSyOwed); if (netYtToPull <= exactYtIn) { if (PMath.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) { return (guess - netYtToPull, guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyIn(MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtOut) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, int256(netPtOut)); // all safe since totalPt and totalSy is int128 netSyIn = uint256(-_netSyIn); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt) internal pure returns (uint256) { int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp(); int256 proportion = logitP.divDown(logitP + PMath.IONE); int256 numerator = proportion.mulDown(totalPt + comp.totalAsset); int256 maxPtOut = totalPt - numerator; // only get 99.9% of the theoretical max to accommodate some precision issues return (uint256(maxPtOut) * 999) / 1000; } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) { revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {SwapData} from "../router/swap-aggregator/IAggregationRouter.sol"; import {FillOrderParams} from "./IPLimitRouter.sol"; struct TokenInput { // TOKEN DATA address tokenIn; uint256 netTokenIn; address tokenMintSy; // AGGREGATOR DATA address zenlinkSwap; SwapData swapData; } struct TokenOutput { // TOKEN DATA address tokenOut; uint256 minTokenOut; address tokenRedeemSy; // AGGREGATOR DATA address zenlinkSwap; SwapData swapData; } struct LimitOrderData { address limitRouter; uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise FillOrderParams[] normalFills; FillOrderParams[] flashFills; bytes optData; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; interface IPMarketSwapCallback { function swapCallback(int256 ptToAccount, int256 syToAccount, bytes calldata data) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; interface IPLimitOrderType { enum OrderType { SY_FOR_PT, PT_FOR_SY, SY_FOR_YT, YT_FOR_SY } // Fixed-size order part with core information struct StaticOrder { uint256 salt; uint256 expiry; uint256 nonce; OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; } struct FillResults { uint256 totalMaking; uint256 totalTaking; uint256 totalFee; uint256 totalNotionalVolume; uint256[] netMakings; uint256[] netTakings; uint256[] netFees; uint256[] notionalVolumes; } } struct Order { uint256 salt; uint256 expiry; uint256 nonce; IPLimitOrderType.OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; bytes permit; } struct FillOrderParams { Order order; bytes signature; uint256 makingAmount; } interface IPLimitRouterCallback is IPLimitOrderType { function limitRouterCallback(uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory data) external returns (bytes memory); } interface IPLimitRouter is IPLimitOrderType { struct OrderStatus { uint128 filledAmount; uint128 remaining; } event OrderCanceled(address indexed maker, bytes32 indexed orderHash); event OrderFilledV2( bytes32 indexed orderHash, OrderType indexed orderType, address indexed YT, address token, uint256 netInputFromMaker, uint256 netOutputToMaker, uint256 feeAmount, uint256 notionalVolume, address maker, address taker ); // @dev actualMaking, actualTaking are in the SY form function fill( FillOrderParams[] memory params, address receiver, uint256 maxTaking, bytes calldata optData, bytes calldata callback ) external returns (uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory callbackReturn); function feeRecipient() external view returns (address); function hashOrder(Order memory order) external view returns (bytes32); function cancelSingle(Order calldata order) external; function cancelBatch(Order[] calldata orders) external; function orderStatusesRaw(bytes32[] memory orderHashes) external view returns (uint256[] memory remainingsRaw, uint256[] memory filledAmounts); function orderStatuses(bytes32[] memory orderHashes) external view returns (uint256[] memory remainings, uint256[] memory filledAmounts); function DOMAIN_SEPARATOR() external view returns (bytes32); function simulate(address target, bytes calldata data) external payable; /* --- Deprecated events --- */ // deprecate on 7/1/2024, prior to official launch event OrderFilled( bytes32 indexed orderHash, OrderType indexed orderType, address indexed YT, address token, uint256 netInputFromMaker, uint256 netOutputToMaker, uint256 feeAmount, uint256 notionalVolume ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.24; library PMath { uint256 internal constant ONE = 1e18; // 18 decimal places int256 internal constant IONE = 1e18; // 18 decimal places function subMax0(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return (a >= b ? a - b : 0); } } function subNoNeg(int256 a, int256 b) internal pure returns (int256) { require(a >= b, "negative"); return a - b; // no unchecked since if b is very negative, a - b might overflow } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; unchecked { return product / ONE; } } function mulDown(int256 a, int256 b) internal pure returns (int256) { int256 product = a * b; unchecked { return product / IONE; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 aInflated = a * ONE; unchecked { return aInflated / b; } } function divDown(int256 a, int256 b) internal pure returns (int256) { int256 aInflated = a * IONE; unchecked { return aInflated / b; } } function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) { return (a + b - 1) / b; } // @author Uniswap function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function square(uint256 x) internal pure returns (uint256) { return x * x; } function squareDown(uint256 x) internal pure returns (uint256) { return mulDown(x, x); } function abs(int256 x) internal pure returns (uint256) { return uint256(x > 0 ? x : -x); } function neg(int256 x) internal pure returns (int256) { return x * (-1); } function neg(uint256 x) internal pure returns (int256) { return Int(x) * (-1); } function max(uint256 x, uint256 y) internal pure returns (uint256) { return (x > y ? x : y); } function max(int256 x, int256 y) internal pure returns (int256) { return (x > y ? x : y); } function min(uint256 x, uint256 y) internal pure returns (uint256) { return (x < y ? x : y); } function min(int256 x, int256 y) internal pure returns (int256) { return (x < y ? x : y); } /*/////////////////////////////////////////////////////////////// SIGNED CASTS //////////////////////////////////////////////////////////////*/ function Int(uint256 x) internal pure returns (int256) { require(x <= uint256(type(int256).max)); return int256(x); } function Int128(int256 x) internal pure returns (int128) { require(type(int128).min <= x && x <= type(int128).max); return int128(x); } function Int128(uint256 x) internal pure returns (int128) { return Int128(Int(x)); } /*/////////////////////////////////////////////////////////////// UNSIGNED CASTS //////////////////////////////////////////////////////////////*/ function Uint(int256 x) internal pure returns (uint256) { require(x >= 0); return uint256(x); } function Uint32(uint256 x) internal pure returns (uint32) { require(x <= type(uint32).max); return uint32(x); } function Uint64(uint256 x) internal pure returns (uint64) { require(x <= type(uint64).max); return uint64(x); } function Uint112(uint256 x) internal pure returns (uint112) { require(x <= type(uint112).max); return uint112(x); } function Uint96(uint256 x) internal pure returns (uint96) { require(x <= type(uint96).max); return uint96(x); } function Uint128(uint256 x) internal pure returns (uint128) { require(x <= type(uint128).max); return uint128(x); } function Uint192(uint256 x) internal pure returns (uint192) { require(x <= type(uint192).max); return uint192(x); } function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps); } function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a >= b && a <= mulDown(b, ONE + eps); } function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a <= b && a >= mulDown(b, ONE - eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {PMath} from "../libraries/math/PMath.sol"; import {LogExpMath} from "../libraries/math/LogExpMath.sol"; import {PYIndex, PYIndexLib} from "../StandardizedYield/PYIndex.sol"; import {MiniHelpers} from "../libraries/MiniHelpers.sol"; import {Errors} from "../libraries/Errors.sol"; struct MarketState { int256 totalPt; int256 totalSy; int256 totalLp; address treasury; /// immutable variables /// int256 scalarRoot; uint256 expiry; /// fee data /// uint256 lnFeeRateRoot; uint256 reserveFeePercent; // base 100 /// last trade data /// uint256 lastLnImpliedRate; } // params that are expensive to compute, therefore we pre-compute them struct MarketPreCompute { int256 rateScalar; int256 totalAsset; int256 rateAnchor; int256 feeRate; } library MarketMathCore { using PMath for uint256; using PMath for int256; using LogExpMath for int256; using PYIndexLib for PYIndex; int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; int256 internal constant PERCENTAGE_DECIMALS = 100; uint256 internal constant DAY = 86400; uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY; int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100; using PMath for uint256; using PMath for int256; /*/////////////////////////////////////////////////////////////// UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidity(MarketState memory market, uint256 syDesired, uint256 ptDesired, uint256 blockTime) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) { (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore(market, syDesired.Int(), ptDesired.Int(), blockTime); lpToReserve = _lpToReserve.Uint(); lpToAccount = _lpToAccount.Uint(); syUsed = _syUsed.Uint(); ptUsed = _ptUsed.Uint(); } function removeLiquidity(MarketState memory market, uint256 lpToRemove) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) { (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int()); netSyToAccount = _syToAccount.Uint(); netPtToAccount = _ptToAccount.Uint(); } function swapExactPtForSy(MarketState memory market, PYIndex index, uint256 exactPtToMarket, uint256 blockTime) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(market, index, exactPtToMarket.neg(), blockTime); netSyToAccount = _netSyToAccount.Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } function swapSyForExactPt(MarketState memory market, PYIndex index, uint256 exactPtToAccount, uint256 blockTime) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(market, index, exactPtToAccount.Int(), blockTime); netSyToMarket = _netSyToAccount.neg().Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } /*/////////////////////////////////////////////////////////////// CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidityCore(MarketState memory market, int256 syDesired, int256 ptDesired, uint256 blockTime) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput(); if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ if (market.totalLp == 0) { lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY; lpToReserve = MINIMUM_LIQUIDITY; syUsed = syDesired; ptUsed = ptDesired; } else { int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt; int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy; if (netLpByPt < netLpBySy) { lpToAccount = netLpByPt; ptUsed = ptDesired; syUsed = (market.totalSy * lpToAccount) / market.totalLp; } else { lpToAccount = netLpBySy; syUsed = syDesired; ptUsed = (market.totalPt * lpToAccount) / market.totalLp; } } if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalSy += syUsed; market.totalPt += ptUsed; market.totalLp += lpToAccount + lpToReserve; } function removeLiquidityCore(MarketState memory market, int256 lpToRemove) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp; netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp; if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalLp = market.totalLp.subNoNeg(lpToRemove); market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount); } function executeTradeCore(MarketState memory market, PYIndex index, int256 netPtToAccount, uint256 blockTime) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); if (market.totalPt <= netPtToAccount) { revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount); } /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime); (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime); } function getMarketPreCompute(MarketState memory market, PYIndex index, uint256 blockTime) internal pure returns (MarketPreCompute memory res) { if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); uint256 timeToExpiry = market.expiry - blockTime; res.rateScalar = _getRateScalar(market, timeToExpiry); res.totalAsset = index.syToAsset(market.totalSy); if (market.totalPt == 0 || res.totalAsset == 0) { revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset); } res.rateAnchor = _getRateAnchor(market.totalPt, market.lastLnImpliedRate, res.totalAsset, res.rateScalar, timeToExpiry); res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry); } function calcTrade(MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { int256 preFeeExchangeRate = _getExchangeRate(market.totalPt, comp.totalAsset, comp.rateScalar, comp.rateAnchor, netPtToAccount); int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg(); int256 fee = comp.feeRate; if (netPtToAccount > 0) { int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee); if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate); fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee); } else { fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg(); } int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS; int256 netAssetToAccount = preFeeAssetToAccount - fee; netSyToAccount = netAssetToAccount < 0 ? index.assetToSyUp(netAssetToAccount) : index.assetToSy(netAssetToAccount); netSyFee = index.assetToSy(fee); netSyToReserve = index.assetToSy(netAssetToReserve); } function _setNewMarketStateTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount, int256 netSyToAccount, int256 netSyToReserve, uint256 blockTime ) internal pure { uint256 timeToExpiry = market.expiry - blockTime; market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve); market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, index.syToAsset(market.totalSy), comp.rateScalar, comp.rateAnchor, timeToExpiry ); if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate(); } function _getRateAnchor( int256 totalPt, uint256 lastLnImpliedRate, int256 totalAsset, int256 rateScalar, uint256 timeToExpiry ) internal pure returns (int256 rateAnchor) { int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry); if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate); { int256 proportion = totalPt.divDown(totalPt + totalAsset); int256 lnProportion = _logProportion(proportion); rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar); } } /// @notice Calculates the current market implied rate. /// @return lnImpliedRate the implied rate function _getLnImpliedRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, uint256 timeToExpiry ) internal pure returns (uint256 lnImpliedRate) { // This will check for exchange rates < PMath.IONE int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0); // exchangeRate >= 1 so its ln >= 0 uint256 lnRate = exchangeRate.ln().Uint(); lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry; } /// @notice Converts an implied rate to an exchange rate given a time to expiry. The /// formula is E = e^rt function _getExchangeRateFromImpliedRate(uint256 lnImpliedRate, uint256 timeToExpiry) internal pure returns (int256 exchangeRate) { uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME; exchangeRate = LogExpMath.exp(rt.Int()); } function _getExchangeRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, int256 netPtToAccount ) internal pure returns (int256 exchangeRate) { int256 numerator = totalPt.subNoNeg(netPtToAccount); int256 proportion = (numerator.divDown(totalPt + totalAsset)); if (proportion > MAX_MARKET_PROPORTION) { revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION); } int256 lnProportion = _logProportion(proportion); exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor; if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate); } function _logProportion(int256 proportion) internal pure returns (int256 res) { if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne(); int256 logitP = proportion.divDown(PMath.IONE - proportion); res = logitP.ln(); } function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) { rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int(); if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar); } function setInitialLnImpliedRate(MarketState memory market, PYIndex index, int256 initialAnchor, uint256 blockTime) internal pure { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ int256 totalAsset = index.syToAsset(market.totalSy); uint256 timeToExpiry = market.expiry - blockTime; int256 rateScalar = _getRateScalar(market, timeToExpiry); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.lastLnImpliedRate = _getLnImpliedRate(market.totalPt, totalAsset, rateScalar, initialAnchor, timeToExpiry); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IPYieldToken} from "../../interfaces/IPYieldToken.sol"; import {IPPrincipalToken} from "../../interfaces/IPPrincipalToken.sol"; import {SYUtils} from "./SYUtils.sol"; import {PMath} from "../libraries/math/PMath.sol"; type PYIndex is uint256; library PYIndexLib { using PMath for uint256; using PMath for int256; function newIndex(IPYieldToken YT) internal returns (PYIndex) { return PYIndex.wrap(YT.pyIndexCurrent()); } function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) { return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount); } function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount); } function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount); } function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) { uint256 _index = PYIndex.unwrap(index); return SYUtils.syToAssetUp(_index, syAmount); } function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) { int256 sign = syAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int(); } function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int(); } function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int(); } }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.8.24; /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; type Currency is address; struct SwapDescription { Currency srcToken; Currency dstToken; address dstReceiver; uint256 amount; uint256 minReturnAmount; } enum SwapType { NONE, ZENLINK, // ETH_WETH not used in Aggregator ETH_WETH } interface IAggregationExecutor { function excute(address msgSender, SwapDescription memory desc, bytes memory route) external payable; } struct SwapData { SwapType swapType; IAggregationExecutor executor; bytes route; } interface IAggregationRouter { function swap(IAggregationExecutor executor, SwapDescription memory desc, bytes memory route) external payable returns (uint256 returnAmount, uint256 spentAmount); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; library MiniHelpers { function isCurrentlyExpired(uint256 expiry) internal view returns (bool) { return (expiry <= block.timestamp); } function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) { return (expiry <= blockTime); } function isTimeInThePast(uint256 timestamp) internal view returns (bool) { return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {IRewardManager} from "./IRewardManager.sol"; import {IPInterestManagerYT} from "./IPInterestManagerYT.sol"; interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT { event NewInterestIndex(uint256 indexed newIndex); event Mint( address indexed caller, address indexed receiverPT, address indexed receiverYT, uint256 amountSyToMint, uint256 amountPYOut ); event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut); event RedeemRewards(address indexed user, uint256[] amountRewardsOut); event RedeemInterest(address indexed user, uint256 interestOut); event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee); function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut); function redeemPY(address receiver) external returns (uint256 amountSyOut); function redeemPYMulti(address[] calldata receivers, uint256[] calldata amountPYToRedeems) external returns (uint256[] memory amountSyOuts); function redeemDueInterestAndRewards(address user, bool redeemInterest, bool redeemRewards) external returns (uint256 interestOut, uint256[] memory rewardsOut); function rewardIndexesCurrent() external returns (uint256[] memory); function pyIndexCurrent() external returns (uint256); function pyIndexStored() external view returns (uint256); function getRewardTokens() external view returns (address[] memory); function SY() external view returns (address); function PT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function doCacheIndexSameBlock() external view returns (bool); function pyIndexLastUpdatedBlock() external view returns (uint128); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IPPrincipalToken is IERC20Metadata { function burnByYT(address user, uint256 amount) external; function mintByYT(address user, uint256 amount) external; function initialize(address _YT) external; function SY() external view returns (address); function YT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; library SYUtils { uint256 internal constant ONE = 1e18; function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate) / ONE; } function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate + ONE - 1) / ONE; } function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE) / exchangeRate; } function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE + exchangeRate - 1) / exchangeRate; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; interface IRewardManager { function userReward(address token, address user) external view returns (uint128 index, uint128 accrued); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; interface IPInterestManagerYT { event CollectInterestFee(uint256 amountInterestFee); function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
{ "remappings": [ "@openzeppelin/=lib/openzeppelin-contracts/", "@openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/openzeppelin-contracts-upgradeable/contracts/" ], "optimizer": { "enabled": true, "runs": 800 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_ACTION_ADD_REMOVE_LIQ","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_PT","type":"address"},{"internalType":"address","name":"_ACTION_SWAP_YT","type":"address"},{"internalType":"address","name":"_ACTION_MISC","type":"address"},{"internalType":"address","name":"_ACTION_CALLBACK","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"RouterInvalidAction","type":"error"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"facetAddress","type":"address"},{"internalType":"enum IDiamondCut.FacetCutAction","name":"action","type":"uint8"},{"internalType":"bytes4[]","name":"functionSelectors","type":"bytes4[]"}],"indexed":false,"internalType":"struct IDiamondCut.FacetCut[]","name":"_diamondCut","type":"tuple[]"},{"indexed":false,"internalType":"address","name":"_init","type":"address"},{"indexed":false,"internalType":"bytes","name":"_calldata","type":"bytes"}],"name":"DiamondCut","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"bytes4","name":"sig","type":"bytes4"}],"name":"facetAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"facetAddresses","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"facet","type":"address"}],"name":"facetFunctionSelectors","outputs":[{"internalType":"bytes4[]","name":"res","type":"bytes4[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"facets","outputs":[{"components":[{"internalType":"address","name":"facetAddress","type":"address"},{"internalType":"bytes4[]","name":"functionSelectors","type":"bytes4[]"}],"internalType":"struct IDiamondLoupe.Facet[]","name":"facets_","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
61012060405234620009125762001b6f60a08138039182620000218162000978565b93849283398101031262000912576200003a816200099e565b9062000049602082016200099e565b62000057604083016200099e565b906200007460806200006c606086016200099e565b94016200099e565b9360805260a05260c05260e052610100526200008f62000917565b6006815260c036602083013730620000a782620009cb565b526080516001600160a01b0316620000bf82620009ef565b5260c0516001600160a01b0316620000d78262000a00565b5260a0516001600160a01b0316620000ef8262000a11565b52610100516001600160a01b0316620001088262000a22565b5260e0516001600160a01b0316620001208262000a33565b528051620001386200013282620009b3565b62000978565b81815291601f196200014a83620009b3565b0160005b818110620008d957505060005b8281106200041d57838051620001756200013282620009b3565b918183526200018482620009b3565b601f190160005b818110620003c757505060005b828110620003635783604051606081016060825282518091526080820190602060808260051b8501019401916000905b828210620002b2577f8faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb67385602088600082840152600083820391826040860152520190a16040516110aa908162000ac582396080518181816104af0152818161064501528181610ceb0152610d37015260a05181818161050b0152818161069901528181610bcf0152610c6b015260c0518181816104dd0152818161066f01528181610d110152610d9b015260e051818181610567015281816106ec01528181610bf50152610c45015261010051818181610539015281816106c301528181610f9d01526110200152f35b848603607f19018152835180516001600160a01b0316875260208101519496939492939192606083019160038210156200034d57604060809160209384870152015193606060408201528451809452019201906000905b8082106200032957505050602080600192970192019201909291620001c8565b82516001600160e01b03191684526020938401939092019160019091019062000309565b634e487b7160e01b600052602160045260246000fd5b6001906001600160a01b036200037a828562000aaf565b51511662000389828762000aaf565b5152600060206200039b838862000aaf565b5101526020620003ac828562000aaf565b5101516040620003bd838862000aaf565b5101520162000198565b6040516060810191906001600160401b0383118184101762000407576020926040526000815260008382015260606040820152828288010152016200018b565b634e487b7160e01b600052604160045260246000fd5b6001600160a01b0362000431828462000aaf565b51166200043f828662000aaf565b51526001600160a01b0362000455828462000aaf565b51169060603083146200086a575b6080516001600160a01b031683146200075a575b60c0516001600160a01b03168314620006c3575b60a0516001600160a01b0316831462000654575b610100516001600160a01b03168314620005f4575b60e0516001936001600160a01b0390911614620004e4575b6020620004da838862000aaf565b510152016200015b565b50620004ef62000957565b600c815261018036602083013780630d4318d960e11b6200051082620009cb565b52632d8f9d8d60e01b6200052482620009ef565b52634e13f36360e01b620005388262000a00565b5263339748cb60e01b6200054c8262000a11565b5263012e638b60e01b620005608262000a22565b52633c23e80160e21b620005748262000a33565b52632ad29c5b60e21b620005888262000a44565b5263307e423360e11b6200059c8262000a55565b52631387657f60e21b620005b08262000a67565b5263bd61951d60e01b620005c48262000a79565b5263dfd702a560e01b620005d88262000a8b565b52631efc6ebd60e31b90620005ed9062000a9d565b52620004cc565b5060405160608101926001600160401b0384118285101762000407576001936040526002825260403660208401378163eb3a7d4760e01b6200063682620009cb565b52637d241f3960e11b906200064b90620009ef565b529250620004b4565b506200065f62000937565b60048152608036602083013780630a94245f60e21b6200067f82620009cb565b52633346d3a360e01b6200069382620009ef565b526311531c4f60e01b620006a78262000a00565b526352fff22f60e01b90620006bc9062000a11565b526200049f565b50620006ce62000917565b6006815260c036602083013780631d2bf8fd60e11b620006ee82620009cb565b5263448b9b9560e01b6200070282620009ef565b52637b8b4b9560e01b620007168262000a00565b526340626ab360e11b6200072a8262000a11565b5263190c351360e31b6200073e8262000a22565b5263682e73cb60e11b90620007539062000a33565b526200048b565b506200076562000957565b600c81526101803660208301378063fa240cf360e01b6200078682620009cb565b5263fed2a78160e01b6200079a82620009ef565b52630de6e94b60e21b620007ae8262000a00565b52634e39026760e01b620007c28262000a11565b526358bda47560e01b620007d68262000a22565b52633db7c44960e01b620007ea8262000a33565b526335bbd64f60e11b620007fe8262000a44565b52634221c25560e11b620008128262000a55565b52634bf713cf60e11b620008268262000a67565b526303e38dbd60e41b6200083a8262000a79565b5263b7d75b8b60e01b6200084e8262000a8b565b5263344ed3f760e21b90620008639062000a9d565b5262000477565b506200087562000937565b600481526080366020830137806314bbdacb60e21b6200089582620009cb565b52637a0ed62760e01b620008a982620009ef565b526356fe50af60e11b620008bd8262000a00565b526366ffd66360e11b90620008d29062000a11565b5262000463565b6040805190810191906001600160401b03831181841017620004075760209260405260008152606083820152828288010152016200014e565b600080fd5b6040519060e082016001600160401b038111838210176200040757604052565b6040519060a082016001600160401b038111838210176200040757604052565b604051906101a082016001600160401b038111838210176200040757604052565b6040519190601f01601f191682016001600160401b038111838210176200040757604052565b51906001600160a01b03821682036200091257565b6001600160401b038111620004075760051b60200190565b805115620009d95760200190565b634e487b7160e01b600052603260045260246000fd5b805160011015620009d95760400190565b805160021015620009d95760600190565b805160031015620009d95760800190565b805160041015620009d95760a00190565b805160051015620009d95760c00190565b805160061015620009d95760e00190565b805160071015620009d9576101000190565b805160081015620009d9576101200190565b805160091015620009d9576101400190565b8051600a1015620009d9576101600190565b8051600b1015620009d9576101800190565b8051821015620009d95760209160051b01019056fe60806040526004361015610015575b3661104257005b6000803560e01c90816352ef6b2c14610058575080637a0ed62714610053578063adfca15e1461004e5763cdffacc60361000e576102b0565b61026c565b610180565b346100bf57806003193601126100bf5761007061047b565b906040519182916020808401906020855283518092526020604086019401925b82811061009f57505050500390f35b83516001600160a01b031685528695509381019392810192600101610090565b80fd5b90815180825260208080930193019160005b8281106100e2575050505090565b83516001600160e01b031916855293810193928101926001016100d4565b6020808201908083528351809252604092604081018260408560051b8401019601946000925b858410610137575050505050505090565b90919293949596858061016f600193603f1986820301885286838d516001600160a01b038151168452015191818582015201906100c2565b990194019401929594939190610126565b34610267576000806003193601126100bf5761019a61047b565b8051906101ae6101a983610372565b61034c565b82815292601f196101be84610372565b01815b8181106102475750505b8281106101e457604051806101e08682610100565b0390f35b8061021d6102046101f760019486610467565b516001600160a01b031690565b61020e8388610467565b51906001600160a01b03169052565b61023261022d6101f78386610467565b61062a565b602061023e8388610467565b510152016101cb565b602090610252610307565b848152826060818301528289010152016101c1565b600080fd5b34610267576020366003190112610267576004356001600160a01b03811681036102675761029c6101e09161062a565b6040519182916020835260208301906100c2565b34610267576020366003190112610267576004356001600160e01b031981168103610267576102e0602091610b30565b6001600160a01b0360405191168152f35b634e487b7160e01b600052604160045260246000fd5b604051906040820182811067ffffffffffffffff82111761032757604052565b6102f1565b6040519060e0820182811067ffffffffffffffff82111761032757604052565b6040519190601f01601f1916820167ffffffffffffffff81118382101761032757604052565b67ffffffffffffffff81116103275760051b60200190565b634e487b7160e01b600052603260045260246000fd5b8051600110156103b05760400190565b61038a565b8051600210156103b05760600190565b8051600310156103b05760800190565b8051600410156103b05760a00190565b8051600510156103b05760c00190565b8051156103b05760200190565b8051600610156103b05760e00190565b8051600710156103b0576101000190565b8051600810156103b0576101200190565b8051600910156103b0576101400190565b8051600a10156103b0576101600190565b8051600b10156103b0576101800190565b80518210156103b05760209160051b010190565b61048361032c565b600681526020810160c03682378151156103b0573090526104a3816103a0565b6001600160a01b0390817f00000000000000000000000000000000000000000000000000000000000000001690526104da826103b5565b817f0000000000000000000000000000000000000000000000000000000000000000169052610508826103c5565b817f0000000000000000000000000000000000000000000000000000000000000000169052610536826103d5565b817f0000000000000000000000000000000000000000000000000000000000000000169052610564826103e5565b907f000000000000000000000000000000000000000000000000000000000000000016905290565b6040519060a0820182811067ffffffffffffffff82111761032757604052600482526080366020840137565b604051906101a0820182811067ffffffffffffffff82111761032757604052600c8252610180366020840137565b6105ee61032c565b600681529060c0366020840137565b604051906060820182811067ffffffffffffffff8211176103275760405260028252604082602036910137565b906060916001600160a01b0380911690308214610ac0575b807f0000000000000000000000000000000000000000000000000000000000000000168214610990575b807f00000000000000000000000000000000000000000000000000000000000000001682146108f0575b807f0000000000000000000000000000000000000000000000000000000000000000168214610880575b807f0000000000000000000000000000000000000000000000000000000000000000168214610840575b7f0000000000000000000000000000000000000000000000000000000000000000161461071357565b905061071d6105b8565b9061073661072a836103f5565b630d4318d960e11b9052565b61074e610742836103a0565b632d8f9d8d60e01b9052565b61076661075a836103b5565b634e13f36360e01b9052565b61077e610772836103c5565b63339748cb60e01b9052565b61079661078a836103d5565b63012e638b60e01b9052565b6107ae6107a2836103e5565b633c23e80160e21b9052565b6107c66107ba83610402565b632ad29c5b60e21b9052565b6107de6107d283610412565b63307e423360e11b9052565b6107f66107ea83610423565b631387657f60e21b9052565b61080e61080283610434565b63bd61951d60e01b9052565b61082661081a83610445565b63dfd702a560e01b9052565b61083e61083283610456565b631efc6ebd60e31b9052565b565b925061084a6105fd565b92610863610857856103f5565b63eb3a7d4760e01b9052565b61087b61086f856103a0565b637d241f3960e11b9052565b6106ea565b925061088a61058c565b926108a3610897856103f5565b630a94245f60e21b9052565b6108bb6108af856103a0565b633346d3a360e01b9052565b6108d36108c7856103b5565b6311531c4f60e01b9052565b6108eb6108df856103c5565b6352fff22f60e01b9052565b6106c0565b92506108fa6105e6565b92610913610907856103f5565b631d2bf8fd60e11b9052565b61092b61091f856103a0565b63448b9b9560e01b9052565b610943610937856103b5565b637b8b4b9560e01b9052565b61095b61094f856103c5565b6340626ab360e11b9052565b610973610967856103d5565b63190c351360e31b9052565b61098b61097f856103e5565b63682e73cb60e11b9052565b610696565b925061099a6105b8565b926109b36109a7856103f5565b63fa240cf360e01b9052565b6109cb6109bf856103a0565b63fed2a78160e01b9052565b6109e36109d7856103b5565b630de6e94b60e21b9052565b6109fb6109ef856103c5565b634e39026760e01b9052565b610a13610a07856103d5565b6358bda47560e01b9052565b610a2b610a1f856103e5565b633db7c44960e01b9052565b610a43610a3785610402565b6335bbd64f60e11b9052565b610a5b610a4f85610412565b634221c25560e11b9052565b610a73610a6785610423565b634bf713cf60e11b9052565b610a8b610a7f85610434565b6303e38dbd60e41b9052565b610aa3610a9785610445565b63b7d75b8b60e01b9052565b610abb610aaf85610456565b63344ed3f760e21b9052565b61066c565b9250610aca61058c565b92610ae3610ad7856103f5565b6314bbdacb60e21b9052565b610afb610aef856103a0565b637a0ed62760e01b9052565b610b13610b07856103b5565b6356fe50af60e11b9052565b610b2b610b1f856103c5565b6366ffd66360e11b9052565b610642565b6001600160e01b03198116637a0ed62760e01b80821015610e4d57506303e38dbd60e41b80821015610d595750633346d3a360e01b80821015610c8d5750630d4318d960e11b80821015610c17575063012e638b60e01b8114610bf1576311531c4f60e01b14610bcc57610bc891505b604051636ad67de160e11b81526001600160e01b031990911660048201529081906024820190565b0390fd5b507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b8114610bf157630a94245f60e21b8114610c6757632d8f9d8d60e01b14610c4257610bc89150610ba0565b507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b630de6e94b60e21b80831015610cbb57508114610c675763339748cb60e01b14610c4257610bc89150610ba0565b90508114610d3357631d2bf8fd60e11b8114610d0d57633db7c44960e01b14610ce857610bc89150610ba0565b507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b50507f000000000000000000000000000000000000000000000000000000000000000090565b6314bbdacb60e21b80831015610dea5750634e13f36360e01b80831015610dbd57508114610d335763448b9b9560e01b14610d9857610bc89150610ba0565b507f000000000000000000000000000000000000000000000000000000000000000090565b90508114610bf157631387657f60e21b8114610bf157634e39026760e01b14610ce857610bc89150610ba0565b90506358bda47560e01b80831015610e2057508114610e1a576352fff22f60e01b14610bcc57610bc89150610ba0565b50503090565b90508114610d335763307e423360e11b8114610bf1576335bbd64f60e11b14610ce857610bc89150610ba0565b6366ffd66360e11b80831015610f2c5750632ad29c5b60e21b80831015610eca57506340626ab360e11b80831015610e9d57508114610e1a57637b8b4b9560e01b14610d9857610bc89150610ba0565b90508114610d0d57634221c25560e11b8114610d3357634bf713cf60e11b14610ce857610bc89150610ba0565b905063b7d75b8b60e01b80831015610eff57508114610bf1576356fe50af60e11b14610efa57610bc89150610ba0565b503090565b90508114610d335763bd61951d60e01b8114610bf15763190c351360e31b14610d9857610bc89150610ba0565b9050633c23e80160e21b80831015610fbf575063344ed3f760e21b80831015610f6d57508114610e1a5763682e73cb60e11b14610d9857610bc89150610ba0565b90508114610d335763dfd702a560e01b8114610bf15763eb3a7d4760e01b14610f9a57610bc89150610ba0565b507f000000000000000000000000000000000000000000000000000000000000000090565b905063fa240cf360e01b80831015610fef57508114610bf157631efc6ebd60e31b14610c4257610bc89150610ba0565b90508114610d3357637d241f3960e11b811461101c5763fed2a78160e01b14610ce857610bc89150610ba0565b50507f000000000000000000000000000000000000000000000000000000000000000090565b6000808061105a81356001600160e01b031916610b30565b368280378136915af43d82803e15611070573d90f35b3d90fdfea26469706673582212208527b4a2a289f01e605b4298b12b481b1340428c54f754af38e541eff79938b164736f6c634300081800330000000000000000000000006d88c539d52d9d9946818dd762783d614336b763000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed9726000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf8449
Deployed Bytecode
0x60806040526004361015610015575b3661104257005b6000803560e01c90816352ef6b2c14610058575080637a0ed62714610053578063adfca15e1461004e5763cdffacc60361000e576102b0565b61026c565b610180565b346100bf57806003193601126100bf5761007061047b565b906040519182916020808401906020855283518092526020604086019401925b82811061009f57505050500390f35b83516001600160a01b031685528695509381019392810192600101610090565b80fd5b90815180825260208080930193019160005b8281106100e2575050505090565b83516001600160e01b031916855293810193928101926001016100d4565b6020808201908083528351809252604092604081018260408560051b8401019601946000925b858410610137575050505050505090565b90919293949596858061016f600193603f1986820301885286838d516001600160a01b038151168452015191818582015201906100c2565b990194019401929594939190610126565b34610267576000806003193601126100bf5761019a61047b565b8051906101ae6101a983610372565b61034c565b82815292601f196101be84610372565b01815b8181106102475750505b8281106101e457604051806101e08682610100565b0390f35b8061021d6102046101f760019486610467565b516001600160a01b031690565b61020e8388610467565b51906001600160a01b03169052565b61023261022d6101f78386610467565b61062a565b602061023e8388610467565b510152016101cb565b602090610252610307565b848152826060818301528289010152016101c1565b600080fd5b34610267576020366003190112610267576004356001600160a01b03811681036102675761029c6101e09161062a565b6040519182916020835260208301906100c2565b34610267576020366003190112610267576004356001600160e01b031981168103610267576102e0602091610b30565b6001600160a01b0360405191168152f35b634e487b7160e01b600052604160045260246000fd5b604051906040820182811067ffffffffffffffff82111761032757604052565b6102f1565b6040519060e0820182811067ffffffffffffffff82111761032757604052565b6040519190601f01601f1916820167ffffffffffffffff81118382101761032757604052565b67ffffffffffffffff81116103275760051b60200190565b634e487b7160e01b600052603260045260246000fd5b8051600110156103b05760400190565b61038a565b8051600210156103b05760600190565b8051600310156103b05760800190565b8051600410156103b05760a00190565b8051600510156103b05760c00190565b8051156103b05760200190565b8051600610156103b05760e00190565b8051600710156103b0576101000190565b8051600810156103b0576101200190565b8051600910156103b0576101400190565b8051600a10156103b0576101600190565b8051600b10156103b0576101800190565b80518210156103b05760209160051b010190565b61048361032c565b600681526020810160c03682378151156103b0573090526104a3816103a0565b6001600160a01b0390817f0000000000000000000000006d88c539d52d9d9946818dd762783d614336b7631690526104da826103b5565b817f000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c169052610508826103c5565b817f000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed9726169052610536826103d5565b817f000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf8449169052610564826103e5565b907f0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf16905290565b6040519060a0820182811067ffffffffffffffff82111761032757604052600482526080366020840137565b604051906101a0820182811067ffffffffffffffff82111761032757604052600c8252610180366020840137565b6105ee61032c565b600681529060c0366020840137565b604051906060820182811067ffffffffffffffff8211176103275760405260028252604082602036910137565b906060916001600160a01b0380911690308214610ac0575b807f0000000000000000000000006d88c539d52d9d9946818dd762783d614336b763168214610990575b807f000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c1682146108f0575b807f000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed9726168214610880575b807f000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf8449168214610840575b7f0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf161461071357565b905061071d6105b8565b9061073661072a836103f5565b630d4318d960e11b9052565b61074e610742836103a0565b632d8f9d8d60e01b9052565b61076661075a836103b5565b634e13f36360e01b9052565b61077e610772836103c5565b63339748cb60e01b9052565b61079661078a836103d5565b63012e638b60e01b9052565b6107ae6107a2836103e5565b633c23e80160e21b9052565b6107c66107ba83610402565b632ad29c5b60e21b9052565b6107de6107d283610412565b63307e423360e11b9052565b6107f66107ea83610423565b631387657f60e21b9052565b61080e61080283610434565b63bd61951d60e01b9052565b61082661081a83610445565b63dfd702a560e01b9052565b61083e61083283610456565b631efc6ebd60e31b9052565b565b925061084a6105fd565b92610863610857856103f5565b63eb3a7d4760e01b9052565b61087b61086f856103a0565b637d241f3960e11b9052565b6106ea565b925061088a61058c565b926108a3610897856103f5565b630a94245f60e21b9052565b6108bb6108af856103a0565b633346d3a360e01b9052565b6108d36108c7856103b5565b6311531c4f60e01b9052565b6108eb6108df856103c5565b6352fff22f60e01b9052565b6106c0565b92506108fa6105e6565b92610913610907856103f5565b631d2bf8fd60e11b9052565b61092b61091f856103a0565b63448b9b9560e01b9052565b610943610937856103b5565b637b8b4b9560e01b9052565b61095b61094f856103c5565b6340626ab360e11b9052565b610973610967856103d5565b63190c351360e31b9052565b61098b61097f856103e5565b63682e73cb60e11b9052565b610696565b925061099a6105b8565b926109b36109a7856103f5565b63fa240cf360e01b9052565b6109cb6109bf856103a0565b63fed2a78160e01b9052565b6109e36109d7856103b5565b630de6e94b60e21b9052565b6109fb6109ef856103c5565b634e39026760e01b9052565b610a13610a07856103d5565b6358bda47560e01b9052565b610a2b610a1f856103e5565b633db7c44960e01b9052565b610a43610a3785610402565b6335bbd64f60e11b9052565b610a5b610a4f85610412565b634221c25560e11b9052565b610a73610a6785610423565b634bf713cf60e11b9052565b610a8b610a7f85610434565b6303e38dbd60e41b9052565b610aa3610a9785610445565b63b7d75b8b60e01b9052565b610abb610aaf85610456565b63344ed3f760e21b9052565b61066c565b9250610aca61058c565b92610ae3610ad7856103f5565b6314bbdacb60e21b9052565b610afb610aef856103a0565b637a0ed62760e01b9052565b610b13610b07856103b5565b6356fe50af60e11b9052565b610b2b610b1f856103c5565b6366ffd66360e11b9052565b610642565b6001600160e01b03198116637a0ed62760e01b80821015610e4d57506303e38dbd60e41b80821015610d595750633346d3a360e01b80821015610c8d5750630d4318d960e11b80821015610c17575063012e638b60e01b8114610bf1576311531c4f60e01b14610bcc57610bc891505b604051636ad67de160e11b81526001600160e01b031990911660048201529081906024820190565b0390fd5b507f000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed972690565b50507f0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf90565b8114610bf157630a94245f60e21b8114610c6757632d8f9d8d60e01b14610c4257610bc89150610ba0565b507f0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf90565b50507f000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed972690565b630de6e94b60e21b80831015610cbb57508114610c675763339748cb60e01b14610c4257610bc89150610ba0565b90508114610d3357631d2bf8fd60e11b8114610d0d57633db7c44960e01b14610ce857610bc89150610ba0565b507f0000000000000000000000006d88c539d52d9d9946818dd762783d614336b76390565b50507f000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c90565b50507f0000000000000000000000006d88c539d52d9d9946818dd762783d614336b76390565b6314bbdacb60e21b80831015610dea5750634e13f36360e01b80831015610dbd57508114610d335763448b9b9560e01b14610d9857610bc89150610ba0565b507f000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c90565b90508114610bf157631387657f60e21b8114610bf157634e39026760e01b14610ce857610bc89150610ba0565b90506358bda47560e01b80831015610e2057508114610e1a576352fff22f60e01b14610bcc57610bc89150610ba0565b50503090565b90508114610d335763307e423360e11b8114610bf1576335bbd64f60e11b14610ce857610bc89150610ba0565b6366ffd66360e11b80831015610f2c5750632ad29c5b60e21b80831015610eca57506340626ab360e11b80831015610e9d57508114610e1a57637b8b4b9560e01b14610d9857610bc89150610ba0565b90508114610d0d57634221c25560e11b8114610d3357634bf713cf60e11b14610ce857610bc89150610ba0565b905063b7d75b8b60e01b80831015610eff57508114610bf1576356fe50af60e11b14610efa57610bc89150610ba0565b503090565b90508114610d335763bd61951d60e01b8114610bf15763190c351360e31b14610d9857610bc89150610ba0565b9050633c23e80160e21b80831015610fbf575063344ed3f760e21b80831015610f6d57508114610e1a5763682e73cb60e11b14610d9857610bc89150610ba0565b90508114610d335763dfd702a560e01b8114610bf15763eb3a7d4760e01b14610f9a57610bc89150610ba0565b507f000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf844990565b905063fa240cf360e01b80831015610fef57508114610bf157631efc6ebd60e31b14610c4257610bc89150610ba0565b90508114610d3357637d241f3960e11b811461101c5763fed2a78160e01b14610ce857610bc89150610ba0565b50507f000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf844990565b6000808061105a81356001600160e01b031916610b30565b368280378136915af43d82803e15611070573d90f35b3d90fdfea26469706673582212208527b4a2a289f01e605b4298b12b481b1340428c54f754af38e541eff79938b164736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006d88c539d52d9d9946818dd762783d614336b763000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed9726000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf8449
-----Decoded View---------------
Arg [0] : _ACTION_ADD_REMOVE_LIQ (address): 0x6d88C539d52D9d9946818dd762783d614336B763
Arg [1] : _ACTION_SWAP_PT (address): 0xB100a1D6bdd8EB9543f2868bEF123AedC9ed9726
Arg [2] : _ACTION_SWAP_YT (address): 0xA4d16aa1B5c5a650E78a82b52cF3DC73aBA8385C
Arg [3] : _ACTION_MISC (address): 0x1E8349D0B55D064db751317D5A093c5aEA0C5AAF
Arg [4] : _ACTION_CALLBACK (address): 0xDf799f803Ee1d93dAEFc9bC280b9037a32BF8449
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000006d88c539d52d9d9946818dd762783d614336b763
Arg [1] : 000000000000000000000000b100a1d6bdd8eb9543f2868bef123aedc9ed9726
Arg [2] : 000000000000000000000000a4d16aa1b5c5a650e78a82b52cf3dc73aba8385c
Arg [3] : 0000000000000000000000001e8349d0b55d064db751317d5a093c5aea0c5aaf
Arg [4] : 000000000000000000000000df799f803ee1d93daefc9bc280b9037a32bf8449
Loading...
Loading
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 29 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.